Exemplo n.º 1
0
 def __init__(self, Fs, Fc, upsample_factor):
     self.upsample_factor = upsample_factor
     self.order = 6
     self.y_hist = np.zeros(self.order)
     self.lowpass = iir.lowpass(.8 / upsample_factor)
     self.i = 0
     self.s = -1j * 2 * np.pi * Fc / Fs
Exemplo n.º 2
0
 def init(self):
     super(Downconverter, self).init()
     self.next = self.kwarg('next', None)
     self.iir_state = np.zeros(6)
     self.iir = iir.lowpass(.8 / upsample_factor)
     self.i = 0
     self.s = -1j * 2 * np.pi * loopback_Fc / loopback_Fs
Exemplo n.º 3
0
def downconvert(source, channel):
    i = 0
    lp = iir.lowpass(.45/channel.upsample_factor, order=6)
    for y in source:
        smoothed = lp(y * np.exp(-1j*2*np.pi*channel.Fc/channel.Fs * np.r_[i:i+y.size]))
        yield smoothed[-i%channel.upsample_factor::channel.upsample_factor]
        i += y.size
Exemplo n.º 4
0
 def init(self):
     super(Downconverter, self).init()
     self.next = self.kwarg('next', None)
     self.iir_state = np.zeros(6)
     self.iir = iir.lowpass(.8/upsample_factor)
     self.i = 0
     self.s = -1j * 2 * np.pi * loopback_Fc / loopback_Fs
Exemplo n.º 5
0
 def __init__(self, Fs, Fc, upsample_factor):
     self.upsample_factor = upsample_factor
     self.order = 6
     self.y_hist = np.zeros(self.order)
     self.lowpass = iir.lowpass(.8/upsample_factor)
     self.i = 0
     self.s = -1j * 2 * np.pi * Fc / Fs
Exemplo n.º 6
0
def processInput(input, loopback_Fs, loopback_Fc, upsample_factor):
    input = input * np.exp(
        -1j * 2 * np.pi * np.arange(input.size) * loopback_Fc / loopback_Fs)
    order = 6
    input = iir.lowpass(.8 / upsample_factor,
                        order=order)(np.r_[np.zeros(order), input])[order:]
    input = input[(np.arange(input.size / upsample_factor) *
                   upsample_factor).astype(int)]
    return input
Exemplo n.º 7
0
def encodeBlurt(source, channel):
    cutoff = (Nsc_used/2 + .5)/nfft
    lp1 = iir.lowpass(cutoff/channel.upsample_factor, order=6, method='Ch', ripple=-.021)
    lp2 = lp1.copy()
    baseRate = rates[0xb]
    k = 0
    for octets in source:
        # prepare header and payload bits
        rateEncoding = 0xb
        rate = rates[rateEncoding]
        data_bits = (octets[:,None] >> np.arange(8)[None,:]).flatten() & 1
        data_bits = np.r_[np.zeros(16, int), data_bits,
                          (~CRC(data_bits) >> np.arange(32)[::-1]) & 1]
        plcp_bits = ((rateEncoding | ((octets.size+4) << 5)) >> np.arange(18)) & 1
        plcp_bits[-1] = plcp_bits.sum() & 1
        # OFDM modulation
        subcarriers = np.vstack((subcarriersFromBits(plcp_bits, baseRate, 0   ),
                                 subcarriersFromBits(data_bits, rate,     0x5d)))
        pilotPolarity = np.resize(scrambler[0x7F], subcarriers.shape[0])
        symbols = np.zeros((subcarriers.shape[0],nfft), complex)
        symbols[:,dataSubcarriers] = subcarriers
        symbols[:,pilotSubcarriers] = pilotTemplate * (1. - 2.*pilotPolarity)[:,None]
        ts_tile_shape = (ncp*ts_reps+nfft-1)//nfft + ts_reps + 1
        symbols_tile_shape = (1, (ncp+nfft-1)//nfft + 1 + 1)
        sts_time = np.tile(np.fft.ifft(sts_freq), ts_tile_shape)[-ncp*ts_reps%nfft:-nfft+1]
        lts_time = np.tile(np.fft.ifft(lts_freq), ts_tile_shape)[-ncp*ts_reps%nfft:-nfft+1]
        symbols  = np.tile(np.fft.ifft(symbols ), symbols_tile_shape)[:,-ncp%nfft:-nfft+1]
        # temporal smoothing
        subsequences = [sts_time, lts_time] + list(symbols)
        output = np.zeros(sum(map(len, subsequences)) - len(subsequences) + 1, complex)
        i = 0
        for x in subsequences:
            j = i + len(x)-1
            output[i] += .5*x[0]
            output[i+1:j] += x[1:-1]
            output[j] += .5*x[-1]
            i = j
        output = np.vstack((output, np.zeros((channel.upsample_factor-1,
                                              output.size), output.dtype)))
        output = output.T.flatten()*channel.upsample_factor
        output = lp2(lp1(np.r_[np.zeros(200), output, np.zeros(200)]))
        # modulation and pre-emphasis
        Omega = 2*np.pi*channel.Fc/channel.Fs
        output = (output * np.exp(1j* Omega * np.r_[k:k+output.size])).real
        k += output.size
        for i in range(preemphasisOrder):
            output = np.diff(np.r_[output,0])
        output *= abs(np.exp(1j*Omega)-1)**-preemphasisOrder
        # stereo beamforming reduction
        delay = np.zeros(stereoDelay*channel.Fs)
        yield np.vstack((np.r_[delay, output], np.r_[output, delay])).T
Exemplo n.º 8
0
 def __init__(self):
     self.Fs = Fs = 96e3
     self.pulse_low = 10e3
     self.pulse_high = 30e3
     self.pulse_duration = int(.1 * Fs)
     self.display_duration = 3.
     self.spacing = spacing = int(.02 * Fs)
     simultaneous_pulses = (self.pulse_duration+2*spacing-1) // (2*spacing)
     self.base_chirp = chirp(self.pulse_low/Fs, self.pulse_high/Fs, self.pulse_duration)
     pulse = self.base_chirp.real
     pulse *= np.clip(np.arange(self.pulse_duration, dtype=float)/(Fs*.025), 0, 1)
     pulse *= np.clip(-np.arange(-self.pulse_duration, 0, dtype=float)/(Fs*.025), 0, 1)
     mono_timing = np.tile(np.r_[1, np.zeros(spacing*2-1)], 3*simultaneous_pulses)
     mono = scipy.signal.fftconvolve(mono_timing, pulse, 'full')[(simultaneous_pulses-1)*spacing*2:simultaneous_pulses*spacing*2]
     self.output = np.tile(np.vstack((mono, np.roll(mono, spacing))).T, (20,1))
     self.lpf = iir.lowpass((self.pulse_high-self.pulse_low)/Fs/2)
     cs = 1116.44 # feet/sec
     self.columns = int(self.display_duration*Fs) // (spacing*2)
     self.buffer = np.zeros((2, spacing, self.columns*2), np.uint16)
     self.window_phase = 0
     self.input_fragment = np.zeros(0, np.complex64)
     self.extent = (0, self.display_duration, -spacing*.1/Fs*cs/2, spacing*.9/Fs*cs/2)
     self.i = 0
     self.phase_locked = None
     super().__init__(channels=2, outBufSize=16384, inBufSize=8192)
     self.fig.delaxes(self.ax)
     self.ax1 = self.fig.add_subplot(1,2,1)
     self.im1 = self.ax1.imshow(self.buffer[0], vmin=0., vmax=10., extent=self.extent, aspect='auto', interpolation='nearest')
     self.ax1.set_xlim(self.extent[:2])
     self.ax1.set_ylim(self.extent[2:])
     self.ax1.grid()
     self.ax2 = self.fig.add_subplot(1,2,2)
     self.im2 = self.ax2.imshow(self.buffer[1], vmin=0., vmax=10., extent=self.extent, aspect='auto', interpolation='nearest')
     self.ax2.set_xlim(self.extent[:2])
     self.ax2.set_ylim(self.extent[2:])
     self.ax2.grid()
     self.ax1.patch.set_visible(False)
     self.ax2.patch.set_visible(False)
     self.fig.patch.set_facecolor('k')
     audio.stream.set_backgroundcolor(self.ax1, 'k')
     audio.stream.set_foregroundcolor(self.ax1, 'w')
     audio.stream.set_backgroundcolor(self.ax2, 'k')
     audio.stream.set_foregroundcolor(self.ax2, 'w')
     self.cm = pl.get_cmap('jet')(np.arange(0,65536)/65535., bytes=True)
Exemplo n.º 9
0
def prepareMaskNoise(fn, Fs, Fc, upsample_factor):
    f = wave.open(fn)
    nframes = f.getnframes()
    dtype = [None, np.uint8, np.int16, None, np.int32][f.getsampwidth()]
    frames = np.fromstring(f.readframes(nframes), dtype).astype(float)
    frames = frames.reshape(nframes, f.getnchannels())
    frames = frames.mean(1)
    frames = util.upsample(frames, Fs / f.getframerate())
    frames /= np.amax(np.abs(frames))
    # band-stop filter for data
    frames *= np.exp(-1j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = iir.highpass(.8 / upsample_factor)(frames)
    frames *= np.exp(2j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = iir.highpass(.8 / upsample_factor)(frames)
    frames *= np.exp(-1j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = frames.real
    # look for beginning and end of noise
    envelope = iir.lowpass(.01)(np.r_[np.zeros(6), np.abs(frames)])[6:]
    start = np.where(envelope > np.amax(envelope) * .01)[0][0]
    end = np.where(envelope > np.amax(envelope) * 1e-3)[0][-1]
    return frames[start:end]
Exemplo n.º 10
0
def prepareMaskNoise(fn, Fs, Fc, upsample_factor):
    f = wave.open(fn)
    nframes = f.getnframes()
    dtype = [None, np.uint8, np.int16, None, np.int32][f.getsampwidth()]
    frames = np.fromstring(f.readframes(nframes), dtype).astype(float)
    frames = frames.reshape(nframes, f.getnchannels())
    frames = frames.mean(1)
    frames = util.upsample(frames, Fs/f.getframerate())
    frames /= np.amax(np.abs(frames))
    # band-stop filter for data
    frames *= np.exp(-1j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = iir.highpass(.8/upsample_factor)(frames)
    frames *= np.exp(2j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = iir.highpass(.8/upsample_factor)(frames)
    frames *= np.exp(-1j * 2 * np.pi * np.arange(frames.size) * Fc / Fs)
    frames = frames.real
    # look for beginning and end of noise
    envelope = iir.lowpass(.01)(np.r_[np.zeros(6), np.abs(frames)])[6:]
    start = np.where(envelope > np.amax(envelope)*.01)[0][0]
    end = np.where(envelope > np.amax(envelope)*1e-3)[0][-1]
    return frames[start:end]
Exemplo n.º 11
0
def processWave(fn):
    signal, Fs = util.readwave(fn)

    signal = np.r_[np.zeros(Fs / 2), signal]

    alternation_interval = Fs * 2
    steady_interval = Fs * 1.5

    # we need to classify the sections of noise and silence, identify the
    # steady-state intervals, FFT them, and label them, then write out the results.
    signal *= 1. / signal.std()

    def downsample(x, ratio):
        order = 6
        return iir.lowpass(1. / (2 * ratio), method='Ch -.2',
                           order=order)(np.r_[np.zeros(order),
                                              x])[order::ratio]

    def peak_detect(input, window_size):
        # look for points outstanding in their neighborhood
        # by explicit comparison
        l = window_size
        M = scipy.linalg.toeplitz(np.r_[input, np.zeros(2 * l)],
                                  np.zeros(2 * l + 1)).T
        ext_input = np.r_[np.zeros(l), input, np.zeros(l)]
        M[:l] = M[:l] < ext_input
        M[l + 1:] = M[l + 1:] < ext_input
        M[l] = True
        return np.where(M.all(0))[0] - l

    ratio = 32 * 15 * 25
    envelope = iir.lowpass(.125)(downsample(
        downsample(downsample(np.abs(signal), 32), 15), 25))
    peaks = peak_detect(envelope, 8) * ratio - 77840

    radius = steady_interval / 2
    subintervals = 75
    intervals = ([], [])
    S_Y_samples = []
    S_N_samples = []
    for p in peaks:
        if p < radius or p + alternation_interval + radius >= signal.size:
            continue
        intervals[0].append((p - radius, p + radius))
        noise = signal[p - radius:p + radius]
        noise = np.fft.fft(noise.reshape(subintervals,
                                         steady_interval / subintervals),
                           axis=1)
        S_Y_samples.append(noise.var(0))
        intervals[1].append((p + alternation_interval - radius,
                             p + alternation_interval + radius))
        silence = signal[p + alternation_interval - radius:p +
                         alternation_interval + radius]
        silence = np.fft.fft(silence.reshape(subintervals,
                                             steady_interval / subintervals),
                             axis=1)
        S_N_samples.append(silence.var(0))

    bins = steady_interval / subintervals / 2
    # note: S_Y = P + N, S_N = N, so S_Y/S_N = 1 + P/N
    capacity = np.array([
        np.log2(np.clip(S_Y / S_N, 1., np.inf))
        for S_Y, S_N in zip(S_Y_samples, S_N_samples)
    ]).mean(0)[:bins]
    S_X = bins * 2 * .1**2
    S_H = np.array([
        np.clip(S_Y - S_N, 0, np.inf) / S_X
        for S_Y, S_N in zip(S_Y_samples, S_N_samples)
    ])[:, :bins]
    H_mag = S_H.mean(0)**.5
    S_Y = np.array(S_Y_samples).mean(0)[:bins]
    S_N = np.array(S_N_samples).mean(0)[:bins]
    df = Fs / float(steady_interval / subintervals)
    f = df * np.arange(bins)
    visualize = False
    if visualize:
        pl.figure()
        pl.subplot(221)
        pl.plot(f, 10 * np.log10(S_Y - S_N))
        pl.plot(f, 10 * np.log10(S_N))
        pl.xlim(0, f.max())
        pl.subplot(223)
        pl.plot(f, capacity)
        pl.xlim(0, f.max())
        pl.xlabel('Frequency (Hz)')
        pl.ylabel('Capacity (bits/s/Hz)')
        pl.subplot(122)
        pl.plot(f, capacity.cumsum() * df)
        pl.xlim(0, f.max())

    test_synchronization = False
    if test_synchronization:
        pl.clf()
        lp = lambda x: iir.lowpass(.005)(np.r_[np.zeros(6), x])[6:]
        pl.plot(lp(np.abs(signal)) * .5)
        pl.plot(np.arange(envelope.size) * ratio - 77840, envelope)
        for x in peaks:
            pl.gca().axvline(x, color='k')
        noise_interval = np.zeros(signal.size, bool)
        for start, end in intervals[0]:
            noise_interval[start:end] = True
        silence_interval = np.zeros(signal.size, bool)
        for start, end in intervals[1]:
            silence_interval[start:end] = True
        import matplotlib.transforms as mtransforms
        ax = pl.gca()
        trans = mtransforms.blended_transform_factory(ax.transData,
                                                      ax.transAxes)
        ax.fill_between(np.arange(signal.size),
                        0,
                        1,
                        where=noise_interval,
                        facecolor='red',
                        alpha=0.5,
                        transform=trans)
        ax.fill_between(np.arange(signal.size),
                        0,
                        1,
                        where=silence_interval,
                        facecolor='magenta',
                        alpha=0.5,
                        transform=trans)
    return df, H_mag, S_N, capacity, len(peaks)
Exemplo n.º 12
0
 def downsample(x, ratio):
     order = 6
     return iir.lowpass(1. / (2 * ratio), method='Ch -.2',
                        order=order)(np.r_[np.zeros(order),
                                           x])[order::ratio]
Exemplo n.º 13
0
def processWave(fn):
    signal, Fs = util.readwave(fn)

    signal = np.r_[np.zeros(Fs/2), signal]

    alternation_interval = Fs*2
    steady_interval = Fs*1.5

    # we need to classify the sections of noise and silence, identify the
    # steady-state intervals, FFT them, and label them, then write out the results.
    signal *= 1./signal.std()

    def downsample(x, ratio):
        order = 6
        return iir.lowpass(1./(2*ratio), method='Ch -.2', order=order)(np.r_[np.zeros(order), x])[order::ratio]

    def peak_detect(input, window_size):
        # look for points outstanding in their neighborhood
        # by explicit comparison
        l = window_size
        M = scipy.linalg.toeplitz(np.r_[input, np.zeros(2*l)], np.zeros(2*l+1)).T
        ext_input = np.r_[np.zeros(l), input, np.zeros(l)]
        M[:l] = M[:l] < ext_input
        M[l+1:] = M[l+1:] < ext_input
        M[l] = True
        return np.where(M.all(0))[0] - l

    ratio = 32*15*25
    envelope = iir.lowpass(.125)(downsample(downsample(downsample(np.abs(signal), 32), 15), 25))
    peaks = peak_detect(envelope, 8) * ratio - 77840

    radius = steady_interval/2
    subintervals = 75
    intervals = ([], [])
    S_Y_samples = []
    S_N_samples = []
    for p in peaks:
        if p < radius or p + alternation_interval + radius >= signal.size: continue
        intervals[0].append((p-radius,p+radius))
        noise = signal[p-radius:p+radius]
        noise = np.fft.fft(noise.reshape(subintervals, steady_interval/subintervals), axis=1)
        S_Y_samples.append(noise.var(0))
        intervals[1].append((p+alternation_interval-radius,p+alternation_interval+radius))
        silence = signal[p+alternation_interval-radius:p+alternation_interval+radius]
        silence = np.fft.fft(silence.reshape(subintervals, steady_interval/subintervals), axis=1)
        S_N_samples.append(silence.var(0))

    bins = steady_interval/subintervals/2
    # note: S_Y = P + N, S_N = N, so S_Y/S_N = 1 + P/N
    capacity = np.array([np.log2(np.clip(S_Y/S_N, 1., np.inf)) for S_Y, S_N in zip(S_Y_samples, S_N_samples)]).mean(0)[:bins]
    S_X = bins * 2 * .1**2
    S_H = np.array([np.clip(S_Y-S_N,0,np.inf)/S_X for S_Y, S_N in zip(S_Y_samples, S_N_samples)])[:,:bins]
    H_mag = S_H.mean(0)**.5
    S_Y = np.array(S_Y_samples).mean(0)[:bins]
    S_N = np.array(S_N_samples).mean(0)[:bins]
    df = Fs/float(steady_interval/subintervals)
    f = df*np.arange(bins)
    visualize = False
    if visualize:
        pl.figure()
        pl.subplot(221)
        pl.plot(f, 10*np.log10(S_Y-S_N))
        pl.plot(f, 10*np.log10(S_N))
        pl.xlim(0, f.max())
        pl.subplot(223)
        pl.plot(f, capacity)
        pl.xlim(0, f.max())
        pl.xlabel('Frequency (Hz)')
        pl.ylabel('Capacity (bits/s/Hz)')
        pl.subplot(122)
        pl.plot(f, capacity.cumsum()*df)
        pl.xlim(0, f.max())

    test_synchronization = False
    if test_synchronization:
        pl.clf()
        lp = lambda x:iir.lowpass(.005)(np.r_[np.zeros(6), x])[6:]
        pl.plot(lp(np.abs(signal))*.5)
        pl.plot(np.arange(envelope.size) * ratio - 77840, envelope)
        map(lambda x:pl.gca().axvline(x, color='k'), peaks)
        noise_interval = np.zeros(signal.size, bool)
        for start, end in intervals[0]:
            noise_interval[start:end] = True
        silence_interval = np.zeros(signal.size, bool)
        for start, end in intervals[1]:
            silence_interval[start:end] = True
        import matplotlib.transforms as mtransforms
        ax = pl.gca()
        trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
        ax.fill_between(np.arange(signal.size), 0, 1, where=noise_interval, facecolor='red', alpha=0.5, transform=trans)
        ax.fill_between(np.arange(signal.size), 0, 1, where=silence_interval, facecolor='magenta', alpha=0.5, transform=trans)
    return df, H_mag, S_N, capacity, len(peaks)
Exemplo n.º 14
0
 def downsample(x, ratio):
     order = 6
     return iir.lowpass(1./(2*ratio), method='Ch -.2', order=order)(np.r_[np.zeros(order), x])[order::ratio]
Exemplo n.º 15
0
def processInput(input, loopback_Fs, loopback_Fc, upsample_factor):
    input = input * np.exp(-1j * 2 * np.pi * np.arange(input.size) * loopback_Fc / loopback_Fs)
    order = 6
    input = iir.lowpass(.8/upsample_factor, order=order)(np.r_[np.zeros(order), input])[order:]
    input = input[(np.arange(input.size/upsample_factor) * upsample_factor).astype(int)]
    return input
Exemplo n.º 16
0
    # trajectory is in meters
    cs = 340. # m/s
    x[:,0] = 0
    x[:,27:38] = 0
    y = np.tile(np.fft.ifft(x, axis=1), (1,3))[:,48:129]
    y[1:,0] = (y[1:,0] + y[:-1,-1]) * .5
    y = upsample.upsample(y[:,:80].flatten(), upsample_factor)
    y = (y * np.exp(1j*2*np.pi*Fc*np.arange(y.size)/Fs)).real

    pl.figure()
    _=pl.specgram(y+n, NFFT=64*upsample_factor, noverlap=-16*upsample_factor, interpolation='nearest', Fs=Fs)

    t0 = np.arange(y.size)/Fs
    t = t0 - trajectory / cs
    y2 = np.interp(t, t0, y.real)
    y2 = iir.lowpass(1./upsample_factor)(y2 * np.exp(-1j*2*np.pi*Fc*np.arange(y.size)/Fs))[::upsample_factor/4]

    pl.figure()
    _=pl.specgram(y2+n[:y2.size], NFFT=64*4, noverlap=-16*4, interpolation='nearest', Fs=Fs/(upsample_factor/4))

    noisy_y2 = y2 + n[:y2.size]

    z = (np.ediff1d(y2, to_end=0.).conj() * y2 * (1j * np.pi * 2)).real

    w = ((np.arange(64*4) + 32*4) % (64*4) - 32*4)
    w = np.where(abs(w) < 32, w, 0)
    e = abs(np.fft.fft((y2+n[:y2.size]).reshape(-1,80*4)[:,16*4:] * np.blackman(64*4), axis=1))**2

    pl.clf()
    _=pl.specgram(y2+n[:y2.size], NFFT=64*4, noverlap=-16*4, interpolation='nearest', Fs=Fs/(upsample_factor/4))
    pl.plot(np.arange(100)*80*upsample_factor/Fs, 1200 + .1 *(e*w).sum(1))