Exemplo n.º 1
0
 def testFewPoints(self):
     # check sanity of paths with less than 3 points
     path1=[[4.3,0.8]]
     path2=numpy.array([[1,2],[2,4]])
     m=4
     d=2
     s=iisignature.prepare(d,m,"cosx")
     s_a=iisignature.prepare(d,2,"cosx")
     length=iisignature.siglength(d,m)
     loglength=iisignature.logsiglength(d,m)
     loglength_a=iisignature.logsiglength(d,2)
     blankLogSig=numpy.zeros(loglength)
     blankLogSig_a=numpy.zeros(loglength_a)
     blankSig=numpy.zeros(length)
     self.assertLess(diff(iisignature.sig(path1,m),blankSig),0.000000001)
     self.assertTrue(numpy.array_equal(iisignature.sig(path1,m,2),numpy.zeros([0,length])))
     self.assertLess(diff(iisignature.logsig(path1,s,"C"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"O"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"S"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"X"),blankSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s_a,"A"),blankLogSig_a),0.000000001)
     blankLogSig[:d]=path2[1]-path2[0]
     blankLogSig_a[:d]=path2[1]-path2[0]
     blankSig[:d]=path2[1]-path2[0]
     self.assertLess(diff(iisignature.logsig(path2,s,"C"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"O"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"S"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"X"),blankSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s_a,"A"),blankLogSig_a),0.000001)
Exemplo n.º 2
0
 def testFewPoints(self):
     # check sanity of paths with less than 3 points
     path1=[[4.3,0.8]]
     path2=numpy.array([[1,2],[2,4]])
     m=4
     d=2
     s=iisignature.prepare(d,m,"cosx")
     s_a=iisignature.prepare(d,2,"cosx")
     length=iisignature.siglength(d,m)
     loglength=iisignature.logsiglength(d,m)
     loglength_a=iisignature.logsiglength(d,2)
     blankLogSig=numpy.zeros(loglength)
     blankLogSig_a=numpy.zeros(loglength_a)
     blankSig=numpy.zeros(length)
     self.assertLess(diff(iisignature.sig(path1,m),blankSig),0.000000001)
     self.assertTrue(numpy.array_equal(iisignature.sig(path1,m,2),numpy.zeros([0,length])))
     self.assertLess(diff(iisignature.logsig(path1,s,"C"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"O"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"S"),blankLogSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s,"X"),blankSig),0.000000001)
     self.assertLess(diff(iisignature.logsig(path1,s_a,"A"),blankLogSig_a),0.000000001)
     blankLogSig[:d]=path2[1]-path2[0]
     blankLogSig_a[:d]=path2[1]-path2[0]
     blankSig[:d]=path2[1]-path2[0]
     self.assertLess(diff(iisignature.logsig(path2,s,"C"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"O"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"S"),blankLogSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s,"X"),blankSig),0.000001)
     self.assertLess(diff(iisignature.logsig(path2,s_a,"A"),blankLogSig_a),0.000001)
Exemplo n.º 3
0
def doplot(n_samples=100, m=5, d=3, nplot=None):
    x = vanilla_data(n_samples=n_samples, d=d)
    # do something to make it interesting: if last coord ever hist 1, then zero out the rest
    hitting_event = np.maximum.accumulate(np.abs(x[:, -1])) > 3
    x[hitting_event, :-1] = 3
    # x[:,:-1] = np.where(cumulative_maximum > 1, 0, x[:,:-1])
    # x = x - x.mean(axis=0)
    # x = x / x.std(axis=0)
    # x = np.exp(x)
    # x = x / x.sum(axis=0)
    s = iis.prepare(d, m)
    if nplot is None:
        nplot = n_samples
    ii = n_samples // nplot
    figure(1)
    clf()
    ax = subplot(2, 1, 1)
    plot(x, alpha=0.5)
    ylabel('path')
    t = list()
    data = list()
    for i in range(ii, n_samples, ii):
        t.append(i)
        temp = iis.logsig(x[:i], s)
        data.append(temp)
    data = np.array(data)
    assert data.shape[1] == iis.logsiglength(d, m), 'not match!'
    t = np.array(t)
    ax = subplot(2, 1, 2)
    plot(t, (data.T / (t**0)).T, alpha=0.5)
    # plot(t, (data[:,-1].T / (t ** 0)).T, alpha=0.5)
    ylabel('logsig')
    xlabel('t')
    show()
    return locals()
Exemplo n.º 4
0
def CLF_grad_Imp(g, path, deg_of_logsig, number_of_segment):
    """
    The implementation of computing the derivatives of gradient from backpropagation.

    g: the flown gradient from backpropagation

    path: dimension (sample_size,n, d)

    number_of_segment: the number of segments

    deg_of_logsig: the degree of the log-signature 
    """
    nT = int(np.shape(path)[1])
    
    dim_path = int(np.shape(path)[-1])
    t_vec = np.linspace(1,nT,number_of_segment+1)
    t_vec = [int(round(x)) for x in t_vec]
    s = iisignature.prepare(dim_path, deg_of_logsig)
    MultiLevelBP = []
    for k in range(int(np.shape(path)[0])):
        tmpMultiLevelBP = np.zeros([1,np.shape(path)[-1]])
        for i in range(number_of_segment): 
            temp_path = path[k][t_vec[i]-1:t_vec[i+1], :] 
            tempBP = iisignature.logsigbackprop(g[k][i], temp_path , s, None)
            tmpMultiLevelBP[-1] += tempBP[0]
            tempBP = np.delete(tempBP, 0, axis=0)
            tmpMultiLevelBP =  np.concatenate((tmpMultiLevelBP, tempBP), axis=0)
        MultiLevelBP.append(tmpMultiLevelBP)
    
    return np.float32(np.array(MultiLevelBP))
Exemplo n.º 5
0
        def prepare(self, dimension, depth):
            if (dimension, depth) in self._log_sig_prepare_cache:
                return self._log_sig_prepare_cache[(dimension, depth)]

            s = iisignature.prepare(dimension, depth)
            self._log_sig_prepare_cache[(dimension, depth)] = s
            return s
Exemplo n.º 6
0
 def testLevel1(self):
     m = 1
     d = 2
     path = numpy.random.uniform(size=(10, d))
     rightSig = path[-1, :] - path[0, :]
     s = iisignature.prepare(d, m, "cosx2")
     self.assertLess(diff(iisignature.sig(path, m), rightSig), 0.0000001)
     for type_ in ("C", "O", "S", "X", "A"):
         self.assertLess(diff(iisignature.logsig(path, s, type_), rightSig),
                         0.0000001, type_)
     self.assertLess(diff(rightSig, iisignature.logsigtosig(rightSig, s)),
                     0.000001)
     derivs = numpy.array([2.1, 3.2])
     pathderivs = numpy.zeros_like(path)
     pathderivs[-1] = derivs
     pathderivs[0] = -derivs
     self.assertLess(
         diff(iisignature.logsigbackprop(derivs, path, s), pathderivs),
         0.00001)
     self.assertLess(
         diff(iisignature.logsigbackprop(derivs, path, s, "X"), pathderivs),
         0.00001)
     self.assertLess(
         diff(iisignature.sigbackprop(derivs, path, m), pathderivs),
         0.00001)
Exemplo n.º 7
0
def ComputeLogsigFeatures(path, number_of_segment, deg_of_logsig):
    """
    The implementation of computing the log-signature of segments of path.

    path: dimension (sample_size,n, d)

    number_of_segment: the number of segments

    deg_of_logsig: the degree of the log-signature 
    """
    nT = int(np.shape(path)[1])
    dim_path = int(np.shape(path)[-1])
    t_vec = np.linspace(1, nT, number_of_segment + 1)
    t_vec = [int(round(x)) for x in t_vec]
    s = iisignature.prepare(dim_path, deg_of_logsig)
    MultiLevelLogSig = []
    for k in range(int(np.shape(path)[0])):
        tmpMultiLevelLogSig = np.zeros(
            (number_of_segment,
             iisignature.logsiglength(dim_path, deg_of_logsig)))
        for i in range(number_of_segment):
            temp_path = path[k][t_vec[i] - 1:t_vec[i + 1], :]
            temp_start = temp_path[0]
            tmpMultiLevelLogSig[i, :] = iisignature.logsig(temp_path, s)
        MultiLevelLogSig.append(tmpMultiLevelLogSig)
    return np.float32(np.array(MultiLevelLogSig))
Exemplo n.º 8
0
def doplot(n_samples=100, m=5, d=3, nplot=None):
    x = vanilla_data(n_samples=n_samples, d=d)
    # do something to make it interesting: if last coord ever hist 1, then zero out the rest
    hitting_event = np.maximum.accumulate(np.abs(x[:,-1])) > 3
    x[hitting_event,:-1] = 3
    # x[:,:-1] = np.where(cumulative_maximum > 1, 0, x[:,:-1])
    # x = x - x.mean(axis=0)
    # x = x / x.std(axis=0)
    # x = np.exp(x)
    # x = x / x.sum(axis=0)
    s = iis.prepare(d, m)
    if nplot is None:
        nplot = n_samples
    ii = n_samples // nplot
    figure(1)
    clf()
    ax = subplot(2,1,1)
    plot(x, alpha=0.5)
    ylabel('path')
    t = list()
    data = list()
    for i in range(ii, n_samples, ii):
        t.append(i)
        temp = iis.logsig(x[:i], s)
        data.append(temp)
    data = np.array(data)
    assert data.shape[1] == iis.logsiglength(d, m), 'not match!'
    t = np.array(t)
    ax = subplot(2,1,2)
    plot(t, (data.T / (t ** 0)).T, alpha=0.5)
    # plot(t, (data[:,-1].T / (t ** 0)).T, alpha=0.5)
    ylabel('logsig')
    xlabel('t')
    show()
    return locals()
Exemplo n.º 9
0
def ComputeMultiLevelLogsig1dBM(BM_paths, number_of_segment, depth_of_tensors, T):
    """
    Compute the log-signature of all samples
    """
    no_of_samples = np.shape(BM_paths)[0]

    if depth_of_tensors == 1:
        MultiLevelLogSigs = np.zeros(
            [no_of_samples, 2 * number_of_segment], dtype=float)
    else:
        MultiLevelLogSigs = np.zeros([no_of_samples, iisignature.logsiglength(
            2, depth_of_tensors) * number_of_segment], dtype=float)

    MultiStart = np.zeros([no_of_samples, number_of_segment], dtype=float)

    s = iisignature.prepare(2, depth_of_tensors)
    print('start computing the logsigs of degree %d:' % depth_of_tensors)
    for j in tqdm(range(0, no_of_samples, 1), total=no_of_samples):
        BM = TimeJointPath(BM_paths[j, :], T)
        result2 = ComputeMultiLevelSig(
            BM, number_of_segment, depth_of_tensors, s)
        #MultiLevelSigs[j] = result2['MultiLevelSig']
        # print(result2)
        MultiLevelLogSigs[j] = result2['MultiLevelLogSig']
        MultiStart[j] = result2['MultiStart']
    n_input = int(np.shape(MultiLevelLogSigs)[1] / number_of_segment)
    X_logsig_start = MultiLevelLogSigs.reshape(
        (np.shape(MultiLevelLogSigs)[0], number_of_segment, n_input))
    batch_x0 = MultiStart.reshape(
        (np.shape(MultiLevelLogSigs)[0], number_of_segment, 1))
    X_logsig_start = np.concatenate((X_logsig_start, batch_x0), axis=2)
    return X_logsig_start
Exemplo n.º 10
0
def iisignature_prepare(channels, depth, method='d'):
    """Like iisignature.prepare, but caches every result."""
    try:
        return _iisignature_prepare_cache[(channels, depth, method)]
    except KeyError:
        prepared = iisignature.prepare(channels, depth, method)
        _iisignature_prepare_cache[(channels, depth, method)] = prepared
        return prepared
Exemplo n.º 11
0
def _getPrep(d, m, lyndon=False):
    hash2use = _prepLyndon if lyndon else _prep
    key = (d, m)
    if key in hash2use:
        return hash2use[key]
    ans = iisignature.prepare(d, m, "D" if lyndon else "DH")
    hash2use[key] = ans
    return ans
Exemplo n.º 12
0
def _getPrep(d,m, lyndon=False):
    hash2use = _prepLyndon if lyndon else _prep
    key = (d,m)
    if key in hash2use:
        return hash2use[key]
    ans = iisignature.prepare(d,m, "D" if lyndon else "DH")
    hash2use[key]=ans
    return ans
Exemplo n.º 13
0
    def consistency(self, coropa, dim, level):
        #numpy.random.seed(21)
        s = iisignature.prepare(dim,level,"coshx" if coropa else "cosx")
        myinfo = {"level":level, "dimension":dim,
                  "methods": ("COSAX" if level <= 2 else "COSX"),
                  "basis":("Standard Hall" if coropa else "Lyndon")}
        self.assertEqual(iisignature.info(s),myinfo)
        path = numpy.random.uniform(size=(10,dim))
        basis = iisignature.basis(s)
        logsig = iisignature.logsig(path,s)
        sig = iisignature.sig(path,level)

        #check lengths
        self.assertEqual(len(basis),iisignature.logsiglength(dim,level))
        self.assertEqual((len(basis),),logsig.shape)
        self.assertEqual(sig.shape,(iisignature.siglength(dim,level),))

        #calculate a signature from logsig
        expanded_logsig = [numpy.zeros(dim ** m) for m in range(1,level + 1)]
        for coeff, expression in zip(logsig,basis):
            values, depth = valueOfBracket(expression,dim)
            expanded_logsig[depth - 1]+=values * coeff
        calculated_sig = numpy.concatenate(exponentiateTensor(expanded_logsig))
        self.assertLess(diff(sig,calculated_sig),0.00001)

        #calculate a log signature from sig
        fullLogSig = numpy.concatenate(logTensor(splitConcatenatedTensor(sig,dim,level)))
        fullLogSigLib = iisignature.logsig(path,s,"x")
        diff1 = numpy.max(numpy.abs(fullLogSigLib - fullLogSig))
        #print
        #(numpy.vstack([fullLogSig,fullLogSigLib,numpy.abs(fullLogSigLib-fullLogSig)]).transpose())
        self.assertLess(diff1,0.00001)

        basisMatrix = []
        zeros = [numpy.zeros(dim ** m) for m in range(1,level + 1)]
        for expression in basis:
            values, depth = valueOfBracket(expression, dim)
            temp = zeros[depth - 1]
            zeros[depth - 1] = values
            basisMatrix.append(numpy.concatenate(zeros))
            zeros[depth - 1] = temp
        calculatedLogSig = lstsq(numpy.transpose(basisMatrix),fullLogSig)[0]
        diff2 = numpy.max(numpy.abs(logsig - calculatedLogSig))
        self.assertLess(diff2,0.00001)

        #check consistency of methods
        slowLogSig = iisignature.logsig(path,s,"o")
        diffs = numpy.max(numpy.abs(slowLogSig - calculatedLogSig))
        self.assertLess(diffs,0.00001)

        sigLogSig = iisignature.logsig(path,s,"s")
        diffs = numpy.max(numpy.abs(sigLogSig - calculatedLogSig))
        self.assertLess(diffs,0.00001)

        if level < 3:
            areaLogSig = iisignature.logsig(path,s,"a")
            diffs = numpy.max(numpy.abs(areaLogSig - calculatedLogSig))
            self.assertLess(diffs,0.00001)
Exemplo n.º 14
0
    def consistency(self, coropa, dim, level):
        #numpy.random.seed(21)
        s = iisignature.prepare(dim,level,"coshx" if coropa else "cosx")
        myinfo = {"level":level, "dimension":dim,
                  "methods": ("COSAX" if level <= 2 else "COSX"),
                  "basis":("Standard Hall" if coropa else "Lyndon")}
        self.assertEqual(iisignature.info(s),myinfo)
        path = numpy.random.uniform(size=(10,dim))
        basis = iisignature.basis(s)
        logsig = iisignature.logsig(path,s)
        sig = iisignature.sig(path,level)

        #check lengths
        self.assertEqual(len(basis),iisignature.logsiglength(dim,level))
        self.assertEqual((len(basis),),logsig.shape)
        self.assertEqual(sig.shape,(iisignature.siglength(dim,level),))

        #calculate a signature from logsig
        expanded_logsig = [numpy.zeros(dim ** m) for m in range(1,level + 1)]
        for coeff, expression in zip(logsig,basis):
            values, depth = valueOfBracket(expression,dim)
            expanded_logsig[depth - 1]+=values * coeff
        calculated_sig = numpy.concatenate(exponentiateTensor(expanded_logsig))
        self.assertLess(diff(sig,calculated_sig),0.00001)

        #calculate a log signature from sig
        fullLogSig = numpy.concatenate(logTensor(splitConcatenatedTensor(sig,dim,level)))
        fullLogSigLib = iisignature.logsig(path,s,"x")
        diff1 = numpy.max(numpy.abs(fullLogSigLib - fullLogSig))
        #print
        #(numpy.vstack([fullLogSig,fullLogSigLib,numpy.abs(fullLogSigLib-fullLogSig)]).transpose())
        self.assertLess(diff1,0.00001)

        basisMatrix = []
        zeros = [numpy.zeros(dim ** m) for m in range(1,level + 1)]
        for expression in basis:
            values, depth = valueOfBracket(expression, dim)
            temp = zeros[depth - 1]
            zeros[depth - 1] = values
            basisMatrix.append(numpy.concatenate(zeros))
            zeros[depth - 1] = temp
        calculatedLogSig = lstsq(numpy.transpose(basisMatrix),fullLogSig)[0]
        diff2 = numpy.max(numpy.abs(logsig - calculatedLogSig))
        self.assertLess(diff2,0.00001)

        #check consistency of methods
        slowLogSig = iisignature.logsig(path,s,"o")
        diffs = numpy.max(numpy.abs(slowLogSig - calculatedLogSig))
        self.assertLess(diffs,0.00001)

        sigLogSig = iisignature.logsig(path,s,"s")
        diffs = numpy.max(numpy.abs(sigLogSig - calculatedLogSig))
        self.assertLess(diffs,0.00001)

        if level < 3:
            areaLogSig = iisignature.logsig(path,s,"a")
            diffs = numpy.max(numpy.abs(areaLogSig - calculatedLogSig))
            self.assertLess(diffs,0.00001)
Exemplo n.º 15
0
 def testLyndon(self):
     d=2
     m=5
     s=iisignature.prepare(d,m,"O")
     for expression in iisignature.basis(s):
         word = ''.join(c for c in expression if c not in '[,]')
         if len(word) > 1:
             for prefixLength in range(1,len(word)):
                 self.assertLess(word[:prefixLength],word[prefixLength:])
Exemplo n.º 16
0
 def testLyndon(self):
     d=2
     m=5
     s=iisignature.prepare(d,m,"O")
     for expression in iisignature.basis(s):
         word = ''.join(c for c in expression if c not in '[,]')
         if len(word) > 1:
             for prefixLength in range(1,len(word)):
                 self.assertLess(word[:prefixLength],word[prefixLength:])
Exemplo n.º 17
0
 def __init__(self,
              model,
              dim,
              level=2,
              transform=lambda x: x,
              **model_args):
     self.prepared = prepare(dim,
                             level)  # iisignature prepare log signature
     super().__init__(model, level, transform, **model_args)
Exemplo n.º 18
0
def tryLogSig():
    s=iisignature.prepare(2,2)
    for expanded in (False, True):
        inp = Variable(torch.randn(8, 2), requires_grad=True)
        if expanded:
            result = LogSig(inp,s,"x")
        else:
            result = LogSig(inp, s)
        print(result.data.numpy())
        result.backward(torch.randn(result.size()))
        print(inp.grad.data)
Exemplo n.º 19
0
def tryLogSig():
    for expanded in (False, True):
        sess=tf.Session()
        path=[[2,3],[3,5],[4,5]]
        m=2
        s=iisignature.prepare(2,m)
        a = tf.placeholder(tf.float32)
        out= LogSig(a,s,"x") if expanded else LogSig(a,s)
        grad = tf.gradients(tf.reduce_sum(out),a)[0]
        #grad = tf.gradients(out,a)[0]
        
        out_vals=(sess.run([out,grad], {a: path}))
        print (out_vals[0])
        print(out_vals[1])
Exemplo n.º 20
0
 def test_logsigbackwards_can_augment_s(self):
     numpy.random.seed(291)
     d=2
     m=7
     pathLength=3
     path = numpy.random.uniform(size=(pathLength,d))
     increment = 0.1*numpy.random.uniform(size=(pathLength,d))
     dFdlogSig = numpy.ones(iisignature.logsiglength(d,m))
     for types in (("x","o","s"),("xh","oh","sh")):
         ss=[iisignature.prepare(d,m,t) for t in types]
         backs=[iisignature.logsigbackprop(dFdlogSig,path,s) for s in ss]
         self.assertTrue(numpy.allclose(backs[0],backs[2]),types[0])
         self.assertTrue(numpy.allclose(backs[1],backs[2]),types[1])
         fwds=[iisignature.logsig(path,s,"s") for s in ss]
         self.assertTrue(numpy.allclose(fwds[0],fwds[2]),types[0])
         self.assertTrue(numpy.allclose(fwds[1],fwds[2]),types[1])
Exemplo n.º 21
0
 def testLevel1(self):
     m=1
     d=2
     path=numpy.random.uniform(size=(10,d))
     rightSig = path[-1,:]-path[0,:]
     s=iisignature.prepare(d,m,"cosx")
     self.assertLess(diff(iisignature.sig(path,m),rightSig),0.0000001)
     for type_ in ("C","O","S","X","A"):
         self.assertLess(diff(iisignature.logsig(path,s,type_),rightSig),0.0000001,type_)
     derivs=numpy.array([2.1,3.2])
     pathderivs=numpy.zeros_like(path)
     pathderivs[-1]=derivs
     pathderivs[0]=-derivs
     self.assertLess(diff(iisignature.logsigbackprop(derivs,path,s),pathderivs),0.00001)
     self.assertLess(diff(iisignature.logsigbackprop(derivs,path,s,"X"),pathderivs),0.00001)
     self.assertLess(diff(iisignature.sigbackprop(derivs,path,m),pathderivs),0.00001)
Exemplo n.º 22
0
 def test_logsigbackwards_can_augment_s(self):
     numpy.random.seed(291)
     d=2
     m=7
     pathLength=3
     path = numpy.random.uniform(size=(pathLength,d))
     increment = 0.1*numpy.random.uniform(size=(pathLength,d))
     dFdlogSig = numpy.ones(iisignature.logsiglength(d,m))
     for types in (("x","o","s"),("xh","oh","sh")):
         ss=[iisignature.prepare(d,m,t) for t in types]
         backs=[iisignature.logsigbackprop(dFdlogSig,path,s) for s in ss]
         self.assertTrue(numpy.allclose(backs[0],backs[2]),types[0])
         self.assertTrue(numpy.allclose(backs[1],backs[2]),types[1])
         fwds=[iisignature.logsig(path,s,"s") for s in ss]
         self.assertTrue(numpy.allclose(fwds[0],fwds[2]),types[0])
         self.assertTrue(numpy.allclose(fwds[1],fwds[2]),types[1])
Exemplo n.º 23
0
    def logSig(self, type, m=5):
        numpy.random.seed(291)
        d=2
        pathLength=10
        s=iisignature.prepare(d,m,type)
        path = numpy.random.uniform(size=(pathLength,d))
        path = numpy.cumsum(2 * (path - 0.5),0)#makes it more random-walk-ish, less like a scribble
        increment = 0.01*path
        increment = 0.1*numpy.random.uniform(size=(pathLength,d))

        manualChange = fdDeriv(lambda x:iisignature.logsig(x,s,type),path,increment,4)
        
        dFdlogSig = numpy.ones(iisignature.siglength(d,m) if "X"==type else iisignature.logsiglength(d,m))
        calculatedChange = numpy.sum(increment*iisignature.logsigbackprop(dFdlogSig,path,s,type))
        #print(manualChange, calculatedChange)
        self.assertLess(numpy.abs(manualChange-calculatedChange),0.0001)
Exemplo n.º 24
0
    def logSig(self, type, m=5):
        numpy.random.seed(291)
        d=2
        pathLength=10
        s=iisignature.prepare(d,m,type)
        path = numpy.random.uniform(size=(pathLength,d))
        path = numpy.cumsum(2 * (path - 0.5),0)#makes it more random-walk-ish, less like a scribble
        increment = 0.01*path
        increment = 0.1*numpy.random.uniform(size=(pathLength,d))

        manualChange = fdDeriv(lambda x:iisignature.logsig(x,s,type),path,increment,4)
        
        dFdlogSig = numpy.ones(iisignature.siglength(d,m) if "X"==type else iisignature.logsiglength(d,m))
        calculatedChange = numpy.sum(increment*iisignature.logsigbackprop(dFdlogSig,path,s,type))
        #print(manualChange, calculatedChange)
        self.assertLess(numpy.abs(manualChange-calculatedChange),0.0001)
Exemplo n.º 25
0
    def doL2S(self, coropa):
        numpy.random.seed(212)
        d = 3
        m = 6
        path = numpy.random.uniform(size=(12, d))
        sig = iisignature.sig(path, m)
        s = iisignature.prepare(d, m, "S2H" if coropa else "S2")
        self.assertTrue(iisignature.info(s)["logsigtosig_supported"])
        logsig = iisignature.logsig(path, s)
        sig_ = iisignature.logsigtosig(logsig, s)
        self.assertEqual(sig.shape, sig_.shape)
        self.assertTrue(numpy.allclose(sig, sig_))

        #Like the other iisig functions, we check that derivatives
        #of logsigtosig allow sum(logsigtosig) to be backproped correctly
        #This is a boring thing to calculate, because after the first level
        #each of the log signature elements is a lie bracket and so
        #contributes a net total of 0 to the signature
        derivsOfSum = numpy.ones((sig.shape[0], ), dtype="float64")
        bumpedLogSig = 1.01 * logsig
        calculated = iisignature.logsigtosigbackprop(derivsOfSum, logsig, s)
        #wantedbackprop = allSensitivities(logsig, lambda l: iisignature.logsigtosig(l,s).sum())
        manualChange = fdDeriv(lambda x: iisignature.logsigtosig(x, s), logsig,
                               bumpedLogSig - logsig, 6)
        calculatedChange = numpy.sum((bumpedLogSig - logsig) * calculated)
        self.assertLess(numpy.abs(manualChange - calculatedChange), 0.00001)
        #beyond the first level, all zero
        if m > 1:
            self.assertLess(numpy.max(numpy.abs(calculated[d:])), 0.00001)
        self.assertEqual(calculated.shape, logsig.shape)

        #Now for a better test, we backprop sum(random*logsigtosig)
        #specifically calculate the change in it caused by bump two ways
        random = numpy.random.uniform(size=sig.shape[0], )
        derivsOfSum = random
        calculated = iisignature.logsigtosigbackprop(derivsOfSum, logsig, s)
        manualChange = fdDeriv(
            lambda x: iisignature.logsigtosig(x, s) * random, logsig,
            bumpedLogSig - logsig, 4)
        calculatedChange = numpy.sum((bumpedLogSig - logsig) * calculated)
        self.assertLess(numpy.abs(manualChange - calculatedChange), 0.00001)
        self.assertEqual(calculated.shape, logsig.shape)
Exemplo n.º 26
0
def ComputeMultiLevelSig1dBM(BM_paths, number_of_segment, depth_of_tensors, T):
    """
    Compute the signature of all samples
    """
    s = iisignature.prepare(2, depth_of_tensors)
    no_of_samples = np.shape(BM_paths)[0]
    MultiLevelSigs = np.zeros([no_of_samples, iisignature.siglength(
        2, depth_of_tensors) * number_of_segment - 1], dtype=float)
    print('start computing the sigs of degree %d:' % depth_of_tensors)
    for j in tqdm(range(0, no_of_samples, 1), total=no_of_samples):
        BM = TimeJointPath(BM_paths[j, :], T)
        result2 = ComputeMultiLevelSig(
            BM, number_of_segment, depth_of_tensors, s, sig='True')
        MultiLevelSigs[j] = result2['MultiLevelLogSig']
    if number_of_segment > 1:
        n_input = int(np.shape(MultiLevelSigs)[1] / number_of_segment)
        X_sig = MultiLevelSigs.reshape(
            (np.shape(MultiLevelSigs)[0], number_of_segment, n_input))
    else:
        X_sig = MultiLevelSigs
    return X_sig
Exemplo n.º 27
0
def demo():
    #1. generate some dummy data
    d=3
    m=6
    path1=np.random.uniform(size=(20,d))
    path2=np.random.uniform(size=(20,d))
    paths = (path1,path2)
    s=iisignature.prepare(d,m)

    #2. print the dot product of the log signatures in tensor space
    #(The "x" means that the log signature is returned in tensor space.)
    expandedLogSig1,expandedLogSig2=(iisignature.logsig(i,s,"x") for i in paths)
    target = np.inner(expandedLogSig1,expandedLogSig2)
    print_ ("Target:", float(target))

    #3. use getMatrices to act on the log signatures expressed in a basis
    #    and get the same answer.
    matrices=getMatrices(s)   
    logsig1,logsig2=(iisignature.logsig(i,s) for i in paths)
    adjustment=scipy.linalg.block_diag(*matrices)
    #print(np.dot(adjustment,logsig2).shape)
    print_ ("We get:", float(np.inner(logsig1,np.dot(adjustment,logsig2))))
def save_plot_sig_logsig_handwritten_data():
    for truncation_order in range(1, 16):
        fig_sig, axs_sig = plt.subplots(10)
        fig_sig.suptitle(
            f"Sig of handwritten digits (0 top and 9 bottom); k={truncation_order}"
        )

        fig_logsig, axs_logsig = plt.subplots(10)
        fig_logsig.suptitle(
            f"Log_sig of handwritten digits (0 top and 9 bottom); k={truncation_order}"
        )

        for i in range(10):
            # 1. logsig
            s = iisignature.prepare(2, truncation_order)
            log_sig = iisignature.logsig(handwritting_ds.training_X_ordered[i],
                                         s)

            log_sig_df = pd.DataFrame(log_sig)  # signatures are rows
            log_sig_df = log_sig_df.transpose(
            )  # ; we move them into columns so that time series format
            axs_logsig[i].plot(log_sig_df.values)
            fig_logsig.savefig(
                f"/home/raymess-lin/git/auto-sig-encoder/plots/handwritten_log_sig_k_{truncation_order}.png"
            )

            # 2. sig
            sig = iisignature.sig(handwritting_ds.training_X_ordered[i],
                                  truncation_order)

            sig_df = pd.DataFrame(sig)  # signatures are rows
            sig_df = sig_df.transpose(
            )  # ; we move them into columns so that time series format
            axs_sig[i].plot(sig_df.values)
            fig_sig.savefig(
                f"/home/raymess-lin/git/auto-sig-encoder/plots/handwritten_sig_k_{truncation_order}.png"
            )
    'PROTEINS/': 59
}

batch_size = bs[dataset_name]
test_size = data_len // 10
train_batches = np.ceil((data_len - test_size) / batch_size).astype(int)
print('number of batches = ', train_batches, ' batch size = ', batch_size)

torch.manual_seed(0)
rng_state = torch.get_rng_state(
)  #seed init to ensure same initial conditions for each training

### eigenvalue path signature ####
if xtra_feat:
    pslevel = 4
    sig_prep = iisignature.prepare(2, pslevel)
    #xtra_feat_length = iisignature.logsiglength(2, pslevel)
    siglength = iisignature.logsiglength(2, pslevel)

    xtra_feat_length = siglength
    if xxtra: xtra_feat_length += 7

else:
    xtra_feat_length = 0

###### preprocess #####
data = []
label = []
mx, mn = -np.inf, np.inf
Alist = None
Aker = None
Exemplo n.º 30
0
 def testHighDim(self):
     for m in [1]:
         d=1000
         path = numpy.random.rand(10,d)
         s=iisignature.prepare(d,m)
         iisignature.logsig(path,s,"A")
Exemplo n.º 31
0
    def test_batch(self):
        numpy.random.seed(734)
        d=2
        m=2
        n=15
        paths = [numpy.random.uniform(-1,1,size=(6,d)) for i in range(n)]
        pathArray15=stack(paths)
        pathArray1315=numpy.reshape(pathArray15,(1,3,1,5,6,d))
        sigs = [iisignature.sig(i,m) for i in paths]
        sigArray=stack(sigs)
        sigArray15=iisignature.sig(pathArray15,m)
        sigArray1315=iisignature.sig(pathArray1315,m)
        siglength=iisignature.siglength(d,m)
        self.assertEqual(sigArray1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(sigArray1315.reshape(n,siglength),sigs))
        self.assertEqual(sigArray15.shape,(15,siglength))
        self.assertTrue(numpy.allclose(sigArray15,sigs))

        backsigs=[iisignature.sigbackprop(i,j,m) for i,j in zip(sigs,paths)]
        backsigArray = stack(backsigs)
        backsigs1315=iisignature.sigbackprop(sigArray1315,pathArray1315,m)
        self.assertEqual(backsigs1315.shape,(1,3,1,5,6,d))
        self.assertTrue(numpy.allclose(backsigs1315.reshape(n,6,2),backsigArray))

        data=[numpy.random.uniform(size=(d,)) for i in range(n)]
        dataArray1315=stack(data).reshape((1,3,1,5,d))
        joined=[iisignature.sigjoin(i,j,m) for i,j in zip(sigs,data)]
        joined1315=iisignature.sigjoin(sigArray1315,dataArray1315,m)
        self.assertEqual(joined1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(joined1315.reshape(n,-1),stack(joined)))
        backjoined=[iisignature.sigjoinbackprop(i,j,k,m) for i,j,k in zip(joined,sigs,data)]
        backjoinedArrays=[stack([i[j] for i in backjoined]) for j in range(2)]
        backjoined1315=iisignature.sigjoinbackprop(joined1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backjoined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backjoined1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0].reshape(n,-1),backjoinedArrays[0]))
        self.assertTrue(numpy.allclose(backjoined1315[1].reshape(n,-1),backjoinedArrays[1]))

        dataAsSigs=[iisignature.sig(numpy.row_stack([numpy.zeros((d,)),i]),m) for i in data]
        dataArray13151=dataArray1315[:,:,:,:,None,:]
        dataArray13151=numpy.repeat(dataArray13151,2,4)*[[0.0],[1.0]]
        dataArrayAsSigs1315=iisignature.sig(dataArray13151,m)
        combined1315=iisignature.sigcombine(sigArray1315,dataArrayAsSigs1315,d,m)
        self.assertEqual(joined1315.shape,combined1315.shape)
        self.assertTrue(numpy.allclose(joined1315,combined1315))
        backcombined1315=iisignature.sigcombinebackprop(joined1315,sigArray1315,dataArrayAsSigs1315,d,m)
        backcombined=[iisignature.sigcombinebackprop(i,j,k,d,m) for i,j,k in zip(joined,sigs,dataAsSigs)]
        backcombinedArrays=[stack([i[j] for i in backcombined]) for j in range(2)]
        self.assertEqual(backcombined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backcombined1315[1].shape,sigArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0],backcombined1315[0]))
        self.assertTrue(numpy.allclose(backcombined1315[0].reshape(n,-1),backcombinedArrays[0]))
        self.assertTrue(numpy.allclose(backcombined1315[1].reshape(n,-1),backcombinedArrays[1]))
        
        scaled=[iisignature.sigscale(i,j,m) for i,j in zip(sigs,data)]
        scaled1315=iisignature.sigscale(sigArray1315,dataArray1315,m)
        self.assertEqual(scaled1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(scaled1315.reshape(n,-1),stack(scaled)))
        backscaled=[iisignature.sigscalebackprop(i,j,k,m) for i,j,k in zip(scaled,sigs,data)]
        backscaledArrays=[stack([i[j] for i in backscaled]) for j in range(2)]
        backscaled1315=iisignature.sigscalebackprop(scaled1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backscaled1315[0].shape,sigArray1315.shape)
        self.assertEqual(backscaled1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backscaled1315[0].reshape(n,-1),backscaledArrays[0]))
        self.assertTrue(numpy.allclose(backscaled1315[1].reshape(n,-1),backscaledArrays[1]))

        s_s=(iisignature.prepare(d,m,"cosax"),iisignature.prepare(d,m,"cosahx"))
        for type in ("c","o","s","x","a","ch","oh","sh","ah"):
            s=s_s[1 if "h" in type else 0]
            logsigs = [iisignature.logsig(i,s,type) for i in paths]
            logsigArray=stack(logsigs)
            logsigArray1315=iisignature.logsig(pathArray1315,s,type)
            self.assertEqual(logsigArray1315.shape,(1,3,1,5,logsigs[0].shape[0]),type)
            self.assertTrue(numpy.allclose(logsigArray1315.reshape(n,-1),logsigArray),type)

            if type in ("s","x","sh"):
                backlogs = stack(iisignature.logsigbackprop(i,j,s,type) for i,j in zip(logsigs,paths))
                backlogs1315 = iisignature.logsigbackprop(logsigArray1315,pathArray1315,s,type)
                self.assertEqual(backlogs1315.shape,backsigs1315.shape)
                self.assertTrue(numpy.allclose(backlogs1315.reshape(n,6,d),backlogs),type)

        a=iisignature.rotinv2dprepare(m,"a")
        rots=stack([iisignature.rotinv2d(i,a) for i in paths])
        rots1315=iisignature.rotinv2d(pathArray1315,a)
        self.assertEqual(rots1315.shape,(1,3,1,5,rots.shape[1]))
        self.assertTrue(numpy.allclose(rots1315.reshape(n,-1),rots))
Exemplo n.º 32
0
    def test_batch(self):
        numpy.random.seed(734)
        d=2
        m=2
        n=15
        paths = [numpy.random.uniform(-1,1,size=(6,d)) for i in range(n)]
        pathArray15=stack(paths)
        pathArray1315=numpy.reshape(pathArray15,(1,3,1,5,6,d))
        sigs = [iisignature.sig(i,m) for i in paths]
        sigArray=stack(sigs)
        sigArray15=iisignature.sig(pathArray15,m)
        sigArray1315=iisignature.sig(pathArray1315,m)
        siglength=iisignature.siglength(d,m)
        self.assertEqual(sigArray1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(sigArray1315.reshape(n,siglength),sigs))
        self.assertEqual(sigArray15.shape,(15,siglength))
        self.assertTrue(numpy.allclose(sigArray15,sigs))

        backsigs=[iisignature.sigbackprop(i,j,m) for i,j in zip(sigs,paths)]
        backsigArray = stack(backsigs)
        backsigs1315=iisignature.sigbackprop(sigArray1315,pathArray1315,m)
        self.assertEqual(backsigs1315.shape,(1,3,1,5,6,d))
        self.assertTrue(numpy.allclose(backsigs1315.reshape(n,6,2),backsigArray))

        data=[numpy.random.uniform(size=(d,)) for i in range(n)]
        dataArray1315=stack(data).reshape((1,3,1,5,d))
        joined=[iisignature.sigjoin(i,j,m) for i,j in zip(sigs,data)]
        joined1315=iisignature.sigjoin(sigArray1315,dataArray1315,m)
        self.assertEqual(joined1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(joined1315.reshape(n,-1),stack(joined)))
        backjoined=[iisignature.sigjoinbackprop(i,j,k,m) for i,j,k in zip(joined,sigs,data)]
        backjoinedArrays=[stack([i[j] for i in backjoined]) for j in range(2)]
        backjoined1315=iisignature.sigjoinbackprop(joined1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backjoined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backjoined1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0].reshape(n,-1),backjoinedArrays[0]))
        self.assertTrue(numpy.allclose(backjoined1315[1].reshape(n,-1),backjoinedArrays[1]))

        scaled=[iisignature.sigscale(i,j,m) for i,j in zip(sigs,data)]
        scaled1315=iisignature.sigscale(sigArray1315,dataArray1315,m)
        self.assertEqual(scaled1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(scaled1315.reshape(n,-1),stack(scaled)))
        backscaled=[iisignature.sigscalebackprop(i,j,k,m) for i,j,k in zip(scaled,sigs,data)]
        backscaledArrays=[stack([i[j] for i in backscaled]) for j in range(2)]
        backscaled1315=iisignature.sigscalebackprop(scaled1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backscaled1315[0].shape,sigArray1315.shape)
        self.assertEqual(backscaled1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backscaled1315[0].reshape(n,-1),backscaledArrays[0]))
        self.assertTrue(numpy.allclose(backscaled1315[1].reshape(n,-1),backscaledArrays[1]))

        s_s=(iisignature.prepare(d,m,"cosax"),iisignature.prepare(d,m,"cosahx"))
        for type in ("c","o","s","x","a","ch","oh","sh","ah"):
            s=s_s[1 if "h" in type else 0]
            logsigs = [iisignature.logsig(i,s,type) for i in paths]
            logsigArray=stack(logsigs)
            logsigArray1315=iisignature.logsig(pathArray1315,s,type)
            self.assertEqual(logsigArray1315.shape,(1,3,1,5,logsigs[0].shape[0]),type)
            self.assertTrue(numpy.allclose(logsigArray1315.reshape(n,-1),logsigArray),type)

            if type in ("s","x","sh"):
                backlogs = stack(iisignature.logsigbackprop(i,j,s,type) for i,j in zip(logsigs,paths))
                backlogs1315 = iisignature.logsigbackprop(logsigArray1315,pathArray1315,s,type)
                self.assertEqual(backlogs1315.shape,backsigs1315.shape)
                self.assertTrue(numpy.allclose(backlogs1315.reshape(n,6,d),backlogs),type)

        a=iisignature.rotinv2dprepare(m,"a")
        rots=stack([iisignature.rotinv2d(i,a) for i in paths])
        rots1315=iisignature.rotinv2d(pathArray1315,a)
        self.assertEqual(rots1315.shape,(1,3,1,5,rots.shape[1]))
        self.assertTrue(numpy.allclose(rots1315.reshape(n,-1),rots))
Exemplo n.º 33
0
 def testHighDim(self):
     for m in [1,2]:
         d=1000
         path = numpy.random.rand(10,d)
         s=iisignature.prepare(d,m)
         iisignature.logsig(path,s,"A")
import numpy as np
import time

start_time = time.time()
max_frames = 420
min_frames = 130
processes = 12

id_set = get_id_set()
size = len(id_set)

explored = {}
k = 3
d = 69
words, word_index = signature.get_words(d, k)
s = prepare(d, k)


def similarity(a, b):
    return log_signature.concatenate_metric(a, b, s)
    return log_signature.linear_metric(a, b)
    return signature.inverse_tensor_metric(a, b, words, word_index, k, d)
    return signature.linear_metric(a, b)
    return signature.concatenate_group_metric(a, b, words, word_index, k, d)
    return signature.concatenate_algebra_metric(a, b, words, word_index, k, d)
    return log_signature.concatenate_group_metric(a, b, s)


def explore(id):
    subject, animation, description = unpack(
        fetch_animations(1, animation_id=id))
Exemplo n.º 35
0
def setup(obj):
    obj.path = torch.rand(obj.size, dtype=torch.float).numpy()
    shape = obj.size[-3], iisignature.logsiglength(obj.size[-1], obj.depth)
    obj.grad = torch.rand(shape).numpy()
    obj.prepare = iisignature.prepare(obj.path.shape[-1], obj.depth)
Exemplo n.º 36
0
import six.moves

#add the parent directory, so we find our iisignature build if it was built --inplace
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import iisignature

from iisignature_theano import LogSig, Sig


#1: SETUP VARIABLES
dim=2
level=3
pathlength=4
timedim=False
useLogSig = True
s=iisignature.prepare(dim,level)

numpy.random.seed(51)
target = numpy.random.uniform(size=(pathlength,dim)).astype("float32")
#target = numpy.cumsum(2*(target-0.5),0)#makes it more random-walk-ish, less like a scribble

targetSig = iisignature.logsig(target,s) if useLogSig else iisignature.sig(target,level)
start = numpy.random.uniform(size=(pathlength,dim)).astype("float32")
start[0,:] = target[0,:]
learnable_mask = numpy.ones((pathlength,dim)).astype("float32")
learnable_mask[0,:]=0 #to stop the starting point being modified
if timedim:
    for i in six.moves.xrange(pathlength):
        target[i,0]=start[i,0]=i*0.2
        learnable_mask[i,0]=0
learning_rate_decay = 1.003
Exemplo n.º 37
0
 def transform(self, X):
     prepared = prepare(self.dim, self.level)
     return np.array([logsig(x, prepared) for x in X])
Exemplo n.º 38
0
#see their log signatures printed on the console.
#based on https://kivy.org/docs/tutorials/firstwidget.html

from kivy.app import App
from kivy.uix.widget import Widget
from kivy.graphics import Color, Ellipse, Line
import numpy as np, os, sys

#add the parent directory, so we find our iisignature build if it was built --inplace
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import iisignature

np.set_printoptions(suppress=True)

m=2
s=iisignature.prepare(2,m)

class MyPaintWidget(Widget):

    def on_touch_down(self, touch):
        with self.canvas:
            Color(1, 1, 0)
            touch.ud['line'] = Line(points=(touch.x, touch.y))

    def on_touch_move(self, touch):
        touch.ud['line'].points += [touch.x, touch.y]
    
    def on_touch_up(self, touch):
        path=np.reshape(touch.ud['line'].points,(-1,2))
        print(iisignature.logsig(path,s))
Exemplo n.º 39
0
 def testIssue16(self):
     # github-reported crash, issue #16
     iisignature.prepare(3, 3, '2')
Exemplo n.º 40
0
def setup(obj):
    obj.path = torch.rand(obj.size, dtype=torch.float).numpy()
    obj.prepare = iisignature.prepare(obj.path.shape[-1], obj.depth)
Exemplo n.º 41
0
import theano, numpy, sys
import six.moves

#add the parent directory, so we find our iisignature build if it was built --inplace
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import iisignature

from iisignature_theano import LogSig, Sig

#1: SETUP VARIABLES
dim = 2
level = 3
pathlength = 4
timedim = False
useLogSig = True
s = iisignature.prepare(dim, level)

numpy.random.seed(51)
target = numpy.random.uniform(size=(pathlength, dim)).astype("float32")
#target = numpy.cumsum(2*(target-0.5),0)#makes it more random-walk-ish, less like a scribble

targetSig = iisignature.logsig(target, s) if useLogSig else iisignature.sig(
    target, level)
start = numpy.random.uniform(size=(pathlength, dim)).astype("float32")
start[0, :] = target[0, :]
learnable_mask = numpy.ones((pathlength, dim)).astype("float32")
learnable_mask[0, :] = 0  #to stop the starting point being modified
if timedim:
    for i in six.moves.xrange(pathlength):
        target[i, 0] = start[i, 0] = i * 0.2
        learnable_mask[i, 0] = 0
Exemplo n.º 42
0
#This program just continually runs some of the important functionality in
#iisignature on small data, so that you can check that memory usage
#does not grow. Even a tiny memory leak becomes very visible e.g. in htop.

#add the parent directory, so we find our iisignature build if it was built --inplace
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import iisignature

length = 20
dim=3
level=2
npaths=3
paths_ = np.random.uniform(size=(npaths,length,dim))
scale_ = np.random.uniform(size=(npaths,dim))
initialsigs_ = np.random.uniform(size=(npaths,iisignature.siglength(dim,level)))
p=iisignature.prepare(dim,level,"cosx")
while 0:
    iisignature.sig(paths[0],level)
for i in range(10**10):
    #copy major parts of the input data, in case we are leaking references to it
    paths=paths_[:]
    increment=scale=scale_[:]
    initialsigs=initialsigs_[:]
    iisignature.sigjoin(initialsigs,scale,level)
    iisignature.sigscale(initialsigs,scale,level)
    iisignature.sigjoinbackprop(initialsigs,initialsigs,scale,level)
    iisignature.sigscalebackprop(initialsigs,initialsigs,scale,level)
    iisignature.sig(paths[0,:,:],level)
    iisignature.sigbackprop(initialsigs[0,:],paths[0,:,:],level)
    #iisignature.sigjacobian(paths[0,:,:],level)
    #iisignature.prepare(dim,level,"cosx")#much slower than other functions