Exemplo n.º 1
0
    def delete(tsuid, no_exception=False):
        """
        Delete the data corresponding to a ts and all associated metadata
        If timeseries belongs to a dataset it will not be removed

        Setting no_exception to True will prevent any exception to be raised.
        Useful to just try to delete a TS if it exists but have no specific action to perform in case of error

        :param tsuid: tsuid of the timeseries to remove
        :type tsuid: str

        :param no_exception: Set to True to not raise any exception, False by default
        :type no_exception: bool

        :raises TypeError: if *tsuid* is not a str
        :raises IkatsNotFoundError: if *tsuid* is not found on server
        :raises IkatsConflictError: if *tsuid* belongs to -at least- one dataset
        :raises SystemError: if any other unhandled error occurred
        """
        tdm = TemporalDataMgr()
        try:
            tdm.remove_ts(tsuid=tsuid)
        except Exception:
            if no_exception:
                pass
            else:
                raise
Exemplo n.º 2
0
    def find_from_meta(constraint=None):
        """
        From a meta data constraint provided in parameter, the method get a TS list matching these constraints

        Example of constraint:
            | {
            |     frequency: [1, 2],
            |     flight_phase: 8
            | }
        will find the TS having the following meta data:
            | (frequency == 1 OR frequency == 2)
            | AND
            | flight_phase == 8


        :returns: list of TSUID matching the constraints
        :rtype: dict

        :param constraint: constraint definition
        :type constraint: dict

        :raises TypeError: if *constraint* is not a dict
        """

        tdm = TemporalDataMgr()
        return tdm.get_ts_from_meta_data(constraint=constraint)
Exemplo n.º 3
0
    def read(tsuid_list, sd=None, ed=None):
        """
        Retrieve the data corresponding to a ts (or a list of ts) without knowing date range

        .. note::
            if omitted, *sd* (start date) and *ed* (end date) will be retrieved from meta data for each TS
            if you want a fixed windowed range, set *sd* and *ed* manually (but be aware that the TS may be
            not completely gathered)

        .. note::
            If no range is provided and no meta data are found, this method will compute the 3 elementary statistics:
               * ikats_start_date : First date of the TS
               * ikats_end_date : Last date of the TS
               * qual_nb_points : Number of points of the TS

        :param tsuid_list:
        :param sd: optional starting date (timestamp in ms from epoch)
        :param ed: optional ending date (timestamp in ms from epoch)

        :type tsuid_list: str or list
        :type sd: int
        :type ed: int

        :returns: a list of ts data as numpy array
        :rtype: list of numpy array

        :raises TypeError: if *tsuid_list* is neither a list nor a string
        """
        tdm = TemporalDataMgr()
        return tdm.get_ts(tsuid_list=tsuid_list, sd=sd, ed=ed)
Exemplo n.º 4
0
    def update(tsuid, name, value, data_type=DTYPE.string, force_create=False):
        """
        Import a meta data into TemporalDataManager

        :param tsuid: Functional Identifier of the TS
        :param name: Metadata name
        :param value: Value of the metadata
        :param data_type: data type of the meta data (used only if force_create, no type change on existing meta data)
        :param force_create: True to create the meta if not exists (default: False)

        :type tsuid: str
        :type name: str
        :type value: str or number
        :type data_type: DTYPE
        :type force_create: bool

        :return: execution status, True if import successful, False otherwise
        :rtype: bool

        :raises TypeError: if *tsuid* not a str
        :raises TypeError: if *name* not a str
        :raises TypeError: if *value* not a str or a number
        :raises TypeError: if *force_create* not a bool

        :raises ValueError: if *tsuid* is empty
        :raises ValueError: if *name* is empty
        :raises ValueError: if *value* is empty
        """

        tdm = TemporalDataMgr()
        return tdm.update_meta_data(tsuid=tsuid,
                                    name=name,
                                    value=value,
                                    data_type=data_type,
                                    force_create=force_create)
Exemplo n.º 5
0
    def find(criterion_type, criteria_list):
        """
        Retrieve the list of functional identifier records.
        Each resource record aggregates one tsuid and associated fundId.

        Note: partial match will not raise error, contrary to empty match.

        :param criterion_type: defines criterion applicable to this search
        :type criterion_type: str value accepted by server.
          ex: 'tsuids' or 'funcIds'
        :param criteria_list: non empty list of possible values for the criterion type
        :type criteria_list: list of str
        :return: matching list of functional identifier resources: dict having following keys defined:
            - 'tsuid',
            - and 'funcId'
        :rtype: list of dict
        :raises exception:
          - TypeError: if unexpected arguments OR status 400 (bad request) OR unexpected http status
          - ValueError: mismatched result: http status 404:  not found
          - ServerError: http status for server errors: 500 <= status < 600
        """

        tdm = TemporalDataMgr()
        return tdm.search_functional_identifiers(criterion_type=criterion_type,
                                                 criteria_list=criteria_list)
Exemplo n.º 6
0
    def list():
        """
        Get the list of all data set and their corresponding description

        :return: key: data set, value: corresponding description : [{'name':name,'description':description}]
        :rtype: list of dict
        """

        tdm = TemporalDataMgr()
        return tdm.get_data_set_list()
Exemplo n.º 7
0
    def list():
        """
        Get the list of all TSUID in database

        :return: the list of TSUID with their associated metrics
        :rtype: list
        """

        tdm = TemporalDataMgr()
        return tdm.get_ts_list()
Exemplo n.º 8
0
    def delete(name):
        """
        Delete a table

        :param name: the name of the table to delete
        :type name: str

        :return: the status of deletion (True=deleted, False otherwise)
        :rtype: bool
        """
        tdm = TemporalDataMgr()
        return tdm.delete_table(name=name)
Exemplo n.º 9
0
    def get_nb_points_from_tsuid(cls, tsuid, ed=None, timeout=300):
        """
        return the effective imported number of points for a given tsuid

        :param tsuid: name of the metric
        :param ed: end date of the ts to get (EPOCH ms)
        :param timeout: timeout for the request (in seconds)

        :type tsuid: str
        :type ed: int
        :type timeout: int

        :return: the imported number of points
        :rtype: int

        :raises ValueError: if no TS with tsuid were found
        :raises SystemError: if openTSDB triggers an error
        """

        # Get Ikats information
        config_reader = ConfigReader()

        # Send the request to get the TSUID information
        if ed is None:
            # Retrieve end date from metadata
            tdm = TemporalDataMgr()
            metadata = tdm.get_meta_data([tsuid])[tsuid]
            # Create or update the metadata
            ed = int(metadata['ikats_end_date'])

        q_ed = "end=%s&" % int(ed)

        url = "http://%s:%s/api/query?start=0&%s&ms=true&tsuid=sum:%sms-count:%s" % (
            config_reader.get('cluster', 'opentsdb.read.ip'),
            int(config_reader.get(
                'cluster', 'opentsdb.read.port')), q_ed, int(ed + 1), tsuid)
        results = requests.get(url=url, timeout=timeout).json()
        if 'error' in results:
            if 'No such name for' in results['error']['message']:
                raise ValueError("OpenTSDB Error : %s (url: %s)" %
                                 (results['error']['message'], url))
            else:
                raise SystemError("OpenTSDB Error : %s (url: %s)" %
                                  (results['error']['message'], url))

        # Extract Nb points successfully imported
        # The for loop may have at most 2 loops because of the way openTSDB output is built
        nb_points = 0
        for point in results[0]['dps']:
            nb_points += int(results[0]['dps'][point])

        return nb_points
Exemplo n.º 10
0
    def delete(tsuid):
        """
        Delete a functional ID from its TSUID

        :param tsuid: TSUID identifying the TS
        :type tsuid: str

        :raises TypeError: if *tsuid* not a str
        :raises ValueError: if *tsuid* is empty
        :raises ValueError: if FID not deleted
        """

        tdm = TemporalDataMgr()
        tdm.delete_fid(tsuid=tsuid)
Exemplo n.º 11
0
    def read(tsuid):
        """
        Get a functional ID from its TSUID

        :param tsuid: TSUID identifying the TS
        :type tsuid: str

        :raises TypeError: if *tsuid* not a str
        :raises ValueError: if *tsuid* is empty
        :raises ValueError: if *tsuid* doesn't have a FID
        """

        tdm = TemporalDataMgr()
        return tdm.get_fid(tsuid=tsuid)
Exemplo n.º 12
0
    def fid(tsuid):
        """
        Retrieve the functional ID associated to the tsuid param.
        :param tsuid: one tsuid value
        :type tsuid: str

        :return: retrieved functional identifier value
        :rtype: str

        :raises TypeError:  if tsuid is not a defined str
        :raises ValueError: no functional ID matching the tsuid
        :raises ServerError: http answer with status : 500 <= status < 600
        """

        tdm = TemporalDataMgr()
        return tdm.get_func_id_from_tsuid(tsuid=tsuid)
Exemplo n.º 13
0
    def read(name):
        """
        Reads the data blob content: for the unique table identified by id.

        :param name: the id key of the raw table to get data from
        :type name: str

        :return: the content data stored.
        :rtype: bytes or str or object

        :raise IkatsNotFoundError: no resource identified by ID
        :raise IkatsException: any other error
        """

        tdm = TemporalDataMgr()
        return tdm.read_table(name=name)
Exemplo n.º 14
0
def main_test():
    """
    Functional test entry point
    """

    tdm = TemporalDataMgr()
    ntdm = NonTemporalDataMgr()

    nb_tsuid = 0
    tsuid_list = []
    answer = input(
        'output functional Identifiers [0] or tsuids [1] (default value : 1) :'
    ) or '1'
    if answer == '0':
        tsuids_out = False
    elif answer == '1':
        tsuids_out = True
    else:
        raise ValueError(TypeError)

    answer = input(
        'input list of tsuids [0] or dataset name [1] (default value : 0) :'
    ) or '0'
    if answer == '0':
        print('Example tsuid_list 1 (benchmark) = ')
        print(
            '[000069000009000AE3, 00006E000009000AE8, 00006A000009000AE4, 00006B000009000AE5,'
            ' 00006C000009000AE6, 00006D000009000AE7, 000066000009000AE0, 000068000009000AE2 ]'
        )
        print('Example tsuid_list 2 (functional ids) = ')
        print('[00001F00000B000BFE, 00008300000B000BFF, 00008400000B000C08]')

        print('Enter your list of tsuids :')
        tsuid = input('tsuid no 1 [ENTER to quit]: ')
        while tsuid != '':
            if tsuid != '':
                nb_tsuid += 1
                tsuid_list.append(tsuid)
            tsuid = input('tsuid no ' + str(nb_tsuid + 1) +
                          '[ENTER to quit]: ')
    else:
        print('Example dataset : dsCorrMat')
        tsuid_list = input('dataset_name: ')

    if tsuid_list:
        sd_temp = input('start date (yyyy-mm-dd) : ')
        ed_temp = input('end date (yyyy-mm-dd): ')
        if sd_temp and ed_temp:
            sd = int(time.mktime(time.strptime(sd_temp, "%Y-%m-%d")))
            ed = int(time.mktime(time.strptime(ed_temp, "%Y-%m-%d")))

            # Correlation Matrix computation and display
            print('Correlation Matrix (pearson) = ')
            print(pearson_correlation_matrix(tdm, tsuid_list, tsuids_out))
            print('PROCESS ID name : PearsonCorrelationMatrix')
        else:
            print('Start date / end date missing')
    else:
        print('tsuids list or dataset missing')
Exemplo n.º 15
0
    def tsuid(fid):
        """
        Retrieve the tsuid associated to the func_id param.

        :param fid: one func_id value
        :type fid: str

        :return: retrieved tsuid value
        :rtype: str

        :raises TypeError: if unexpected func_id parameter OR status 400 (bad request) OR unexpected http status
        :raises ValueError: mismatched result: http status 404:  not found
        :raises ServerError: http status for server errors: 500 <= status < 600
        """

        tdm = TemporalDataMgr()
        return tdm.get_tsuid_from_func_id(func_id=fid)
Exemplo n.º 16
0
            def get_ts_to_accu(tsuid):
                """
                Function to be called to retrieve one TS content values
                :param tsuid: TS to get content from
                :return:
                """
                tdm = TemporalDataMgr(host=broadcast.value['host'],
                                      port=broadcast.value['port'])

                # The slice removes the timestamp column
                ts_points = tdm.get_ts(tsuid)[0][:, 1]

                accumulator.add(
                    {tsuid: {
                        "data": ts_points,
                        "nb_points": len(ts_points)
                    }})
Exemplo n.º 17
0
    def list(name=None, strict=True):
        """
        List all tables
        If name is specified, filter by name
        name can contains "*", this character is considered as "any chars" (equivalent to regexp /.*/)

        :param name: name to find
        :param strict: consider name without any wildcards

        :type name: str or None
        :type strict: bool

        :return: the list of tables matching the requirements
        :rtype: list
        """
        tdm = TemporalDataMgr()
        return tdm.list_tables(name=name, strict=strict)
Exemplo n.º 18
0
    def create(cls,
               tsuid,
               name,
               value,
               data_type=DTYPE.string,
               force_update=False):
        """
        Import a meta data into TemporalDataManager

        :param tsuid: Functional Identifier of the TS
        :param name: Metadata name
        :param value: Value of the metadata
        :param data_type: data type of the meta data
        :param force_update: True to create the meta if not exists (default: False)

        :type tsuid: str
        :type name: str
        :type value: str or number
        :type data_type: DTYPE
        :type force_update: bool

        :return: execution status, True if import successful, False otherwise
        :rtype: bool

        :raises TypeError: if *tsuid* not a str
        :raises TypeError: if *name* not a str
        :raises TypeError: if *value* not a str or a number
        :raises TypeError: if *data_type* not a DTYPE
        :raises TypeError: if *force_update* not a bool

        :raises ValueError: if *tsuid* is empty
        :raises ValueError: if *name* is empty
        :raises ValueError: if *value* is empty
        """

        tdm = TemporalDataMgr()
        result = tdm.import_meta_data(tsuid=tsuid,
                                      name=name,
                                      value=value,
                                      data_type=data_type,
                                      force_update=force_update)
        if not result:
            cls.LOGGER.error("Metadata '%s' couldn't be saved for TS %s", name,
                             tsuid)
        return result
Exemplo n.º 19
0
    def read(ds_name):
        """
        Retrieve the list of TS identifier corresponding to a data set provided in arguments

        :param ds_name: name of the data set to request TS list from
        :type ds_name: str

        :return:
           information about ts_list and description
           * *ts_list* is the list of TS matching the data_set
           * *description* is the description sentence of the data set
        :rtype: dict

        :raises TypeError: if data_set is not a str
        """

        tdm = TemporalDataMgr()
        return tdm.get_data_set(data_set=ds_name)
Exemplo n.º 20
0
 def inherit_properties(cls, tsuid, parent):
     """
     :param tsuid: TSUID of the TS (which will inherit properties)
     :param parent: TSUID of parent TS (from which inheritance will be done)
     :type tsuid: str
     :type parent: str
     """
     tdm = TemporalDataMgr()
     try:
         metadata = tdm.get_meta_data([parent])[parent]
         for meta_name in metadata:
             if not Wrapper.NON_INHERITABLE_PATTERN.match(meta_name):
                 tdm.import_meta_data(tsuid=tsuid,
                                      name=meta_name,
                                      value=metadata[meta_name],
                                      force_update=True)
     except (ValueError, TypeError, SystemError) as exception:
         cls.logger.warning(
             "Can't get metadata of parent TS (%s), nothing will be inherited; \nreason: %s",
             parent, exception)
Exemplo n.º 21
0
    def create(tsuid, fid):
        """
        Import a functional ID into TemporalDataManager

        :param tsuid: TSUID identifying the TS
        :param fid: Functional identifier

        :type tsuid: str
        :type fid: str

        :raises TypeError: if *tsuid* not a str
        :raises TypeError: if *fid* not a str
        :raises ValueError: if *tsuid* is empty
        :raises ValueError: if *fid* is empty
        :raises IndexError: if *fid* exists
        :raises SystemError: if another issue occurs
        """

        tdm = TemporalDataMgr()
        tdm.import_fid(tsuid=tsuid, fid=fid)
Exemplo n.º 22
0
    def create(ds_name, description, tsuid_list):
        """
        Create a new data set composed of the *tsuid_list*

        :param ds_name: name of the data set
        :param description: short functional description about the content
        :param tsuid_list: list of tsuid composing the data set

        :type ds_name: str
        :type description: str
        :type tsuid_list: list OR str

        :return: execution status (True if success, False otherwise)
        :rtype: bool

        :raises TypeError: if *tsuid_list* is not a list
        """

        tdm = TemporalDataMgr()
        return tdm.import_data_set(data_set_id=ds_name,
                                   description=description,
                                   tsuid_list=tsuid_list)
Exemplo n.º 23
0
    def delete(ds_name, deep=False):
        """
        Remove data_set from base

        :param ds_name: name of the data set to delete
        :type ds_name: str

        :param deep: true to deeply remove dataset (tsuids and metadata erased)
        :type deep: boolean

        :return: True if operation is a success, False if error occurred
        :rtype: bool

        .. note::
           Removing an unknown data set results in a successful operation (server constraint)
           The only possible errors may come from server (HTTP status code 5xx)

        :raises TypeError: if *data_set* is not a str
        """

        tdm = TemporalDataMgr()
        return tdm.remove_data_set(data_set=ds_name, deep=deep)
Exemplo n.º 24
0
    def create(data, name=None, description=None):
        """
        Create a table

        If name or description is provided,
        the method will overwrite the corresponding fields inside the data.

        :param data: data to store
        :param name: name of the table (optional)
        :param description: description of the table (optional)

        :type data: dict
        :type name: str or None
        :type description: str or None

        :return: the id of the created table
        """
        if name is not None:
            data['table_desc']['name'] = name
        if description is not None:
            data['table_desc']['desc'] = description
        tdm = TemporalDataMgr()
        return tdm.create_table(data=data)
Exemplo n.º 25
0
    def read(ts_list, with_type=False):
        """
        Request for metadata of a TS or a list of TS

        .. note::
           Accepted format for list of TS are:
               * 'TS1,TS2,TS3,TS4'
               * 'TS1'
               * ['TS1','TS2','TS3','TS4']
               * ['TS1']

        :returns: metadata for each TS
        :rtype: dict (key is TS identifier, value is list of metadata with its associated data type)
            | {
            |     'TS1': {'param1':{'value':'value1', 'type': 'dtype'}, 'param2':{'value':'value2', 'type': 'dtype'}},
            |     'TS2': {'param1':{'value':'value1', 'type': 'dtype'}, 'param2':{'value':'value2', 'type': 'dtype'}}
            | }
        :rtype: dict (key is TS identifier, value is list of metadata without its associated data type)
            | {
            |     'TS1': {'param1':'value1', 'param2':'value2'},
            |     'TS2': {'param1':'value1', 'param2':'value2'}
            | }

        :param ts_list: list of TS identifier
        :type ts_list: str or list

        :param with_type: boolean indicating the content to return
        :type with_type: bool

        :raises TypeError: if *ts_list* is neither a str nor a list
        """

        tdm = TemporalDataMgr()
        if with_type:
            return tdm.get_typed_meta_data(ts_list=ts_list)
        else:
            return tdm.get_meta_data(ts_list=ts_list)
Exemplo n.º 26
0
    def test_ccf_dataset_real_ts(self):
        """
        test of ccf calculation using real timeseries (dataset)
        """
        tdm = TemporalDataMgr()

        start_time = time.time()
        # CCF correlation calculation
        results = ccf(tdm=tdm, tsuid_list_or_dataset='Portfolio', cut_ts=True)

        LOGGER.info("EXECUTION TIME : %.3f seconds", time.time() - start_time)

        print('CORRELATION CCF :\n', results)

        # The result must be a 14x14 matrix with a header line and a header column
        self.assertEqual(results.shape, (14, 14))
Exemplo n.º 27
0
    def test_pearson_corr_real_ts(self):
        """
        test of pearson correlation calculation using real timeseries (dataset)
        """
        tdm = TemporalDataMgr()

        # correlation calculation on benchmark
        results = pearson_correlation_matrix(tdm=tdm,
                                             tsuid_list_or_dataset='Portfolio',
                                             tsuids_out=True,
                                             cut_ts=True)

        print('Pearson Correlation matrix :\n', results)

        # The result must be a 14x14 matrix with a header line and a header column
        self.assertEqual(results.shape, (14, 14))
Exemplo n.º 28
0
    def test_pearson_corr(self):
        """
        test of pearson correlation calculation using mocked timeseries
        """
        tdm = TemporalDataMgr()

        # Correlation matrix
        results = pearson_correlation_matrix(
            tdm=tdm,
            tsuid_list_or_dataset=['00001', '00002', '00003', '00004'],
            tsuids_out=True)

        print('Pearson Correlation matrix :\n', results)

        # The result must be a 5x5 matrix with a header line and a header column
        self.assertEqual(results.shape, (5, 5))
Exemplo n.º 29
0
        def run_sax_spark(working_tsuid):
            """
            Method called by spark job

            :param working_tsuid: rdd item
            """

            spark_tdm = TemporalDataMgr(host=broadcast.value['host'],
                                        port=broadcast.value['port'])

            results = run_sax_from_tsuid(
                tdm=spark_tdm,
                tsuid=working_tsuid,
                alphabet_size=broadcast.value['alphabet_size'],
                word_size=broadcast.value['word_size'],
                normalize=broadcast.value['normalize'])

            accumulator.add({working_tsuid: results})
Exemplo n.º 30
0
    def test_ccf(self):
        """
        test of ccf calculation using mocked timeseries
        result is exactly checked
        """
        tdm = TemporalDataMgr()

        # CCF correlation calculation
        results = ccf(
            tdm=tdm,
            tsuid_list_or_dataset=['00001', '00002', '00003', '00004'],
            cut_ts=True)

        print('CORRELATION CCF :\n', results)

        # The result must be a 5x5 matrix with a header line and a header column
        self.assertEqual(results.shape, (5, 5))
        self.assertListEqual(
            results.tolist(),
            np.array([[
                '', 'FuncId_0001', 'FuncId_0002', 'FuncId_0003', 'FuncId_0004'
            ],
                      [
                          'FuncId_0001', '1.000000000000000',
                          '0.981980506061966', '-1.000000000000000',
                          '-0.981980506061966'
                      ],
                      [
                          'FuncId_0002', '0.981980506061966',
                          '1.000000000000000', '-0.981980506061966',
                          '-1.000000000000000'
                      ],
                      [
                          'FuncId_0003', '-1.000000000000000',
                          '-0.981980506061966', '1.000000000000000',
                          '0.981980506061966'
                      ],
                      [
                          'FuncId_0004', '-0.981980506061966',
                          '-1.000000000000000', '0.981980506061966',
                          '1.000000000000000'
                      ]]).tolist())