Exemplo n.º 1
0
    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):
        graph = kwargs["graph"] if "graph" in kwargs else Graph()
        if "graph" in kwargs:
            del kwargs["graph"]
        super(CountingWorkflow, self).__init__(
            shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs
        )
        self.stored_classifier = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--csv-export-file",
            help="Instead of exporting prediction density images, export total counts to the given csv path.",
        )
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        allowed_axis_orders = []
        for space in itertools.permutations("xyz", 2):
            allowed_axis_orders.append("".join(space) + "c")

        self.dataSelectionApplet = DataSelectionApplet(
            self, "Input Data", "Input Data", forceAxisOrder=allowed_axis_orders
        )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ["Raw Data"]
        opDataSelection.DatasetRoles.setValue(role_names)

        self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections")

        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator
        opCounting.WorkingDirectory.connect(opDataSelection.WorkingDirectory)

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)

        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue(["Probabilities"])

        self._applets = []
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)

        self.batchProcessingApplet = BatchProcessingApplet(
            self, "Batch Processing", self.dataSelectionApplet, self.dataExportApplet
        )
        self._applets.append(self.batchProcessingApplet)
        if unused_args:
            # We parse the export setting args first.  All remaining args are considered input files by the input applet.
            self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args(unused_args)
            self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args(unused_args)
        else:
            self._batch_input_args = None
            self._batch_export_args = None

        if unused_args:
            logger.warning("Unused command-line args: {}".format(unused_args))
Exemplo n.º 2
0
    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super( CountingWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument("--csv-export-file", help="Instead of exporting prediction density images, export total counts to the given csv path.")
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        self.projectMetadataApplet = ProjectMetadataApplet()

        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data",
                                                       batchDataGui=False,
                                                       force5d=False
                                                      )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ['Raw Data']
        opDataSelection.DatasetRoles.setValue( role_names )

        self.featureSelectionApplet = FeatureSelectionApplet(self,
                                                             "Feature Selection",
                                                             "FeatureSelections")

        #self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)
        
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue( ['Probabilities'] )        

        self._applets = []
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)


        self._batch_input_args = None
        self._batch_export_args = None

        self.batchInputApplet = None
        self.batchResultsApplet = None

        if appendBatchOperators:
            # Connect batch workflow (NOT lane-based)
            self._initBatchWorkflow()
            if unused_args:
                # We parse the export setting args first.
                # All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args, role_names )
Exemplo n.º 3
0
class CountingWorkflow(Workflow):
    workflowName = "Cell Density Counting"
    workflowDescription = "This is obviously self-explanatory."
    defaultAppletIndex = 0  # show DataSelection by default

    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, *args, **kwargs):
        graph = kwargs["graph"] if "graph" in kwargs else Graph()
        if "graph" in kwargs:
            del kwargs["graph"]
        super(CountingWorkflow, self).__init__(
            shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs
        )
        self.stored_classifier = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--csv-export-file",
            help="Instead of exporting prediction density images, export total counts to the given csv path.",
        )
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        allowed_axis_orders = []
        for space in itertools.permutations("xyz", 2):
            allowed_axis_orders.append("".join(space) + "c")

        self.dataSelectionApplet = DataSelectionApplet(
            self, "Input Data", "Input Data", forceAxisOrder=allowed_axis_orders
        )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ["Raw Data"]
        opDataSelection.DatasetRoles.setValue(role_names)

        self.featureSelectionApplet = FeatureSelectionApplet(self, "Feature Selection", "FeatureSelections")

        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator
        opCounting.WorkingDirectory.connect(opDataSelection.WorkingDirectory)

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)

        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue(["Probabilities"])

        self._applets = []
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)

        self.batchProcessingApplet = BatchProcessingApplet(
            self, "Batch Processing", self.dataSelectionApplet, self.dataExportApplet
        )
        self._applets.append(self.batchProcessingApplet)
        if unused_args:
            # We parse the export setting args first.  All remaining args are considered input files by the input applet.
            self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args(unused_args)
            self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args(unused_args)
        else:
            self._batch_input_args = None
            self._batch_export_args = None

        if unused_args:
            logger.warning("Unused command-line args: {}".format(unused_args))

    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def prepareForNewLane(self, laneIndex):
        """
        Overridden from Workflow base class.
        Called immediately before a new lane is added to the workflow.
        """
        # When the new lane is added, dirty notifications will propagate throughout the entire graph.
        # This means the classifier will be marked 'dirty' even though it is still usable.
        # Before that happens, let's store the classifier, so we can restore it at the end of connectLane(), below.
        opCounting = self.countingApplet.topLevelOperator
        if opCounting.classifier_cache.Output.ready() and not opCounting.classifier_cache._dirty:
            self.stored_classifier = opCounting.classifier_cache.Output.value
        else:
            self.stored_classifier = None

    def handleNewLanesAdded(self):
        """
        Overridden from Workflow base class.
        Called immediately after a new lane is added to the workflow and initialized.
        """
        # Restore classifier we saved in prepareForNewLane() (if any)
        if self.stored_classifier is not None:
            self.countingApplet.topLevelOperator.classifier_cache.forceValue(self.stored_classifier)
            # Release reference
            self.stored_classifier = None

    def connectLane(self, laneIndex):
        ## Access applet operators
        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
        opCounting = self.countingApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)

        #### connect input image
        opTrainingFeatures.InputImage.connect(opData.Image)

        opCounting.InputImages.connect(opData.Image)
        opCounting.FeatureImages.connect(opTrainingFeatures.OutputImage)
        opCounting.CachedFeatureImages.connect(opTrainingFeatures.CachedOutputImage)
        # opCounting.UserLabels.connect(opClassify.LabelImages)
        # opCounting.ForegroundLabels.connect(opObjExtraction.LabelImage)
        opDataExport.Inputs.resize(1)
        opDataExport.Inputs[0].connect(opCounting.HeadlessPredictionProbabilities)
        opDataExport.RawData.connect(opData.ImageGroup[0])
        opDataExport.RawDatasetInfo.connect(opData.DatasetGroup[0])

    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.

        If the user provided command-line arguments, use them to configure
        the workflow for batch mode and export all results.
        (This workflow's headless mode supports only batch mode for now.)
        """
        # Headless batch mode.
        if self._headless and self._batch_input_args and self._batch_export_args:
            self.dataExportApplet.configure_operator_with_parsed_args(self._batch_export_args)

            # If the user provided a csv_path via the command line,
            # overwrite the setting in the counting export operator.
            csv_path = self.parsed_counting_workflow_args.csv_export_file
            if csv_path:
                self.dataExportApplet.topLevelOperator.CsvFilepath.setValue(csv_path)

            if self.countingApplet.topLevelOperator.classifier_cache._dirty:
                logger.warning(
                    "Your project file has no classifier.  " "A new classifier will be trained for this run."
                )

            logger.info("Beginning Batch Processing")
            self.batchProcessingApplet.run_export_from_parsed_args(self._batch_input_args)
            logger.info("Completed Batch Processing")

    def prepare_for_entire_export(self):
        """
        Customization hook for data export (including batch mode).
        """
        self.freeze_status = self.countingApplet.topLevelOperator.FreezePredictions.value
        self.countingApplet.topLevelOperator.FreezePredictions.setValue(False)
        # Create a new CSV file to write object counts into.
        self.csv_export_file = None
        if self.dataExportApplet.topLevelOperator.CsvFilepath.ready():
            csv_path = self.dataExportApplet.topLevelOperator.CsvFilepath.value
            logger.info("Exporting object counts to CSV: " + csv_path)
            self.csv_export_file = open(csv_path, "w")

    def post_process_lane_export(self, lane_index):
        """
        Customization hook for data export (including batch mode).
        """
        # Write the object counts for this lane as a line in the CSV file.
        if self.csv_export_file:
            self.dataExportApplet.write_csv_results(self.csv_export_file, lane_index)

    def post_process_entire_export(self):
        """
        Customization hook for data export (including batch mode).
        """
        self.countingApplet.topLevelOperator.FreezePredictions.setValue(self.freeze_status)
        if self.csv_export_file:
            self.csv_export_file.close()

    def handleAppletStateUpdateRequested(self):
        """
        Overridden from Workflow base class
        Called when an applet has fired the :py:attr:`Applet.statusUpdateSignal`
        """
        # If no data, nothing else is ready.
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        input_ready = len(opDataSelection.ImageGroup) > 0 and not self.dataSelectionApplet.busy

        opFeatureSelection = self.featureSelectionApplet.topLevelOperator
        featureOutput = opFeatureSelection.OutputImage
        features_ready = (
            input_ready
            and len(featureOutput) > 0
            and featureOutput[0].ready()
            and (TinyVector(featureOutput[0].meta.shape) > 0).all()
        )

        opDataExport = self.dataExportApplet.topLevelOperator
        predictions_ready = (
            features_ready
            and len(opDataExport.Inputs) > 0
            and opDataExport.Inputs[0][0].ready()
            and (TinyVector(opDataExport.Inputs[0][0].meta.shape) > 0).all()
        )

        self._shell.setAppletEnabled(self.featureSelectionApplet, input_ready)
        self._shell.setAppletEnabled(self.countingApplet, features_ready)
        self._shell.setAppletEnabled(self.dataExportApplet, predictions_ready and not self.dataExportApplet.busy)
        self._shell.setAppletEnabled(
            self.batchProcessingApplet, predictions_ready and not self.batchProcessingApplet.busy
        )

        # Lastly, check for certain "busy" conditions, during which we
        #  should prevent the shell from closing the project.
        busy = False
        busy |= self.dataSelectionApplet.busy
        busy |= self.featureSelectionApplet.busy
        busy |= self.dataExportApplet.busy
        busy |= self.batchProcessingApplet.busy
        self._shell.enableProjectChanges(not busy)
Exemplo n.º 4
0
class CountingWorkflow(Workflow):
    workflowName = "Cell Density Counting"
    workflowDescription = "This is obviously self-explanatory."
    defaultAppletIndex = 1 # show DataSelection by default

    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super( CountingWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument("--csv-export-file", help="Instead of exporting prediction density images, export total counts to the given csv path.")
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        self.projectMetadataApplet = ProjectMetadataApplet()

        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data",
                                                       batchDataGui=False,
                                                       force5d=False
                                                      )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ['Raw Data']
        opDataSelection.DatasetRoles.setValue( role_names )

        self.featureSelectionApplet = FeatureSelectionApplet(self,
                                                             "Feature Selection",
                                                             "FeatureSelections")

        #self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)
        
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue( ['Probabilities'] )        

        self._applets = []
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)


        self._batch_input_args = None
        self._batch_export_args = None

        self.batchInputApplet = None
        self.batchResultsApplet = None

        if appendBatchOperators:
            # Connect batch workflow (NOT lane-based)
            self._initBatchWorkflow()
            if unused_args:
                # We parse the export setting args first.
                # All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.batchResultsApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchInputApplet.parse_known_cmdline_args( unused_args, role_names )

    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def connectLane(self, laneIndex):
        ## Access applet operators
        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
        opCounting = self.countingApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)


        #### connect input image
        opTrainingFeatures.InputImage.connect(opData.Image)

        opCounting.InputImages.connect(opData.Image)
        opCounting.FeatureImages.connect(opTrainingFeatures.OutputImage)
        opCounting.LabelsAllowedFlags.connect(opData.AllowLabels)
        opCounting.CachedFeatureImages.connect( opTrainingFeatures.CachedOutputImage )
        #opCounting.UserLabels.connect(opClassify.LabelImages)
        #opCounting.ForegroundLabels.connect(opObjExtraction.LabelImage)
        opDataExport.Inputs.resize(1)
        opDataExport.Inputs[0].connect( opCounting.HeadlessPredictionProbabilities )
        opDataExport.RawData.connect( opData.ImageGroup[0] )
        opDataExport.RawDatasetInfo.connect( opData.DatasetGroup[0] )
        opDataExport.ConstraintDataset.connect( opData.ImageGroup[0] )

    def _initBatchWorkflow(self):
        """
        Connect the batch-mode top-level operators to the training workflow and to eachother.
        """
        # Access applet operators from the training workflow
        opTrainingDataSelection = self.dataSelectionApplet.topLevelOperator
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator
        opClassify = self.countingApplet.topLevelOperator
                
        opSelectFirstLane = OperatorWrapper( OpSelectSubslot, parent=self )
        opSelectFirstLane.Inputs.connect( opTrainingDataSelection.ImageGroup )
        opSelectFirstLane.SubslotIndex.setValue(0)
        
        opSelectFirstRole = OpSelectSubslot( parent=self )
        opSelectFirstRole.Inputs.connect( opSelectFirstLane.Output )
        opSelectFirstRole.SubslotIndex.setValue(0)

        ## Create additional batch workflow operators
        opBatchFeatures = OperatorWrapper( OpFeatureSelection, operator_kwargs={'filter_implementation':'Original'}, parent=self, promotedSlotNames=['InputImage'] )
        opBatchPredictionPipeline = OperatorWrapper( OpPredictionPipeline, parent=self )
        
        # Create applets for batch workflow
        self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "BatchDataSelection", supportIlastik05Import=False, batchDataGui=True)
        self.batchResultsApplet = CountingDataExportApplet(self, "Batch Prediction Output Locations", opBatchPredictionPipeline, isBatch=True)

        # Expose in shell        
        self._applets.append(self.batchInputApplet)
        self._applets.append(self.batchResultsApplet)

        opBatchInputs = self.batchInputApplet.topLevelOperator
        opBatchResults = self.batchResultsApplet.topLevelOperator
        
        opBatchInputs.DatasetRoles.connect( opTrainingDataSelection.DatasetRoles )
        opBatchResults.ConstraintDataset.connect( opSelectFirstRole.Output )
        
        
        ## Connect Operators ##
        opTranspose = OpTransposeSlots( parent=self )
        opTranspose.OutputLength.setValue(1)
        opTranspose.Inputs.connect( opBatchInputs.DatasetGroup )
        
        # Provide dataset paths from data selection applet to the batch export applet
        opBatchResults.RawDatasetInfo.connect( opTranspose.Outputs[0] )
        opBatchResults.WorkingDirectory.connect( opBatchInputs.WorkingDirectory )
        
        # Connect (clone) the feature operator inputs from 
        #  the interactive workflow's features operator (which gets them from the GUI)
        opBatchFeatures.Scales.connect( opTrainingFeatures.Scales )
        opBatchFeatures.FeatureIds.connect( opTrainingFeatures.FeatureIds )
        opBatchFeatures.SelectionMatrix.connect( opTrainingFeatures.SelectionMatrix )
        
        # Classifier and LabelsCount are provided by the interactive workflow
        opBatchPredictionPipeline.Classifier.connect( opClassify.Classifier )
        opBatchPredictionPipeline.MaxLabel.connect( opClassify.MaxLabelValue )
        opBatchPredictionPipeline.FreezePredictions.setValue( False )
        
        # Provide these for the gui
        opBatchResults.RawData.connect( opBatchInputs.Image )
        opBatchResults.PmapColors.connect( opClassify.PmapColors )
        opBatchResults.LabelNames.connect( opClassify.LabelNames )
        opBatchResults.UpperBound.connect( opClassify.UpperBound )
        
        # Connect Image pathway:
        # Input Image -> Features Op -> Prediction Op -> Export
        opBatchFeatures.InputImage.connect( opBatchInputs.Image )
        opBatchPredictionPipeline.FeatureImages.connect( opBatchFeatures.OutputImage )
        
        opBatchResults.SelectionNames.setValue( ['Probabilities'] )        
        # opBatchResults.Inputs is indexed by [lane][selection],
        # Use OpTranspose to allow connection.
        opTransposeBatchInputs = OpTransposeSlots( parent=self )
        opTransposeBatchInputs.OutputLength.setValue(0)
        opTransposeBatchInputs.Inputs.resize(1)
        opTransposeBatchInputs.Inputs[0].connect( opBatchPredictionPipeline.HeadlessPredictionProbabilities ) # selection 0
        
        # Now opTransposeBatchInputs.Outputs is level-2 indexed by [lane][selection]
        opBatchResults.Inputs.connect( opTransposeBatchInputs.Outputs )

        # We don't actually need the cached path in the batch pipeline.
        # Just connect the uncached features here to satisfy the operator.
        opBatchPredictionPipeline.CachedFeatureImages.connect( opBatchFeatures.OutputImage )

        self.opBatchPredictionPipeline = opBatchPredictionPipeline

    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.
        
        If the user provided command-line arguments, use them to configure 
        the workflow for batch mode and export all results.
        (This workflow's headless mode supports only batch mode for now.)
        """
        # Configure the batch data selection operator.
        if self._batch_input_args and (self._batch_input_args.input_files or self._batch_input_args.raw_data):
            self.batchInputApplet.configure_operator_with_parsed_args( self._batch_input_args )
        
        # Configure the data export operator.
        if self._batch_export_args:
            self.batchResultsApplet.configure_operator_with_parsed_args( self._batch_export_args )

        if self._batch_input_args and self.countingApplet.topLevelOperator.classifier_cache._dirty:
            logger.warn("Your project file has no classifier.  "
                        "A new classifier will be trained for this run.")

        if self._headless:
            # In headless mode, let's see the messages from the training operator.
            logging.getLogger("lazyflow.operators.classifierOperators").setLevel(logging.DEBUG)
        
        if self._headless and self._batch_input_args and self._batch_export_args:
            # Make sure we're using the up-to-date classifier.
            self.countingApplet.topLevelOperator.FreezePredictions.setValue(False)

            csv_path = self.parsed_counting_workflow_args.csv_export_file
            if csv_path:
                logger.info( "Exporting Object Counts to {}".format(csv_path) )
                sys.stdout.write("Progress: ")
                sys.stdout.flush()
                def print_progress( progress ):
                    sys.stdout.write( "{:.1f} ".format( progress ) )
                    sys.stdout.flush()

                self.batchResultsApplet.progressSignal.connect(print_progress)
                req = self.batchResultsApplet.prepareExportObjectCountsToCsv( csv_path )
                req.wait()

                # Finished.
                sys.stdout.write("\n")
                sys.stdout.flush()
            else:
                # Now run the batch export and report progress....
                opBatchDataExport = self.batchResultsApplet.topLevelOperator
                for i, opExportDataLaneView in enumerate(opBatchDataExport):
                    logger.info( "Exporting object density image {} to {}".format(i, opExportDataLaneView.ExportPath.value) )
        
                    sys.stdout.write( "Result {}/{} Progress: ".format( i, len( opBatchDataExport ) ) )
                    sys.stdout.flush()
                    def print_progress( progress ):
                        sys.stdout.write( "{:.1f} ".format( progress ) )
                        sys.stdout.flush()
        
                    # If the operator provides a progress signal, use it.
                    slotProgressSignal = opExportDataLaneView.progressSignal
                    slotProgressSignal.subscribe( print_progress )
                    opExportDataLaneView.run_export()
                    
                    # Finished.
                    sys.stdout.write("\n")

    def handleAppletStateUpdateRequested(self):
        """
        Overridden from Workflow base class
        Called when an applet has fired the :py:attr:`Applet.statusUpdateSignal`
        """
        # If no data, nothing else is ready.
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        input_ready = len(opDataSelection.ImageGroup) > 0 and not self.dataSelectionApplet.busy

        opFeatureSelection = self.featureSelectionApplet.topLevelOperator
        featureOutput = opFeatureSelection.OutputImage
        features_ready = input_ready and \
                         len(featureOutput) > 0 and  \
                         featureOutput[0].ready() and \
                         (TinyVector(featureOutput[0].meta.shape) > 0).all()

        opDataExport = self.dataExportApplet.topLevelOperator
        predictions_ready = features_ready and \
                            len(opDataExport.Inputs) > 0 and \
                            opDataExport.Inputs[0][0].ready() and \
                            (TinyVector(opDataExport.Inputs[0][0].meta.shape) > 0).all()

        self._shell.setAppletEnabled(self.featureSelectionApplet, input_ready)
        self._shell.setAppletEnabled(self.countingApplet, features_ready)
        self._shell.setAppletEnabled(self.dataExportApplet, predictions_ready and not self.dataExportApplet.busy)
        
        # Training workflow must be fully configured before batch can be used
        self._shell.setAppletEnabled(self.batchInputApplet, predictions_ready)

        opBatchDataSelection = self.batchInputApplet.topLevelOperator
        batch_input_ready = predictions_ready and \
                            len(opBatchDataSelection.ImageGroup) > 0
        self._shell.setAppletEnabled(self.batchResultsApplet, batch_input_ready)
        
        # Lastly, check for certain "busy" conditions, during which we 
        #  should prevent the shell from closing the project.
        busy = False
        busy |= self.dataSelectionApplet.busy
        busy |= self.featureSelectionApplet.busy
        busy |= self.dataExportApplet.busy
        self._shell.enableProjectChanges( not busy )
Exemplo n.º 5
0
    def _initBatchWorkflow(self):
        """
        Connect the batch-mode top-level operators to the training workflow and to eachother.
        """
        # Access applet operators from the training workflow
        opTrainingDataSelection = self.dataSelectionApplet.topLevelOperator
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator
        opClassify = self.countingApplet.topLevelOperator
                
        opSelectFirstLane = OperatorWrapper( OpSelectSubslot, parent=self )
        opSelectFirstLane.Inputs.connect( opTrainingDataSelection.ImageGroup )
        opSelectFirstLane.SubslotIndex.setValue(0)
        
        opSelectFirstRole = OpSelectSubslot( parent=self )
        opSelectFirstRole.Inputs.connect( opSelectFirstLane.Output )
        opSelectFirstRole.SubslotIndex.setValue(0)

        ## Create additional batch workflow operators
        opBatchFeatures = OperatorWrapper( OpFeatureSelection, operator_kwargs={'filter_implementation':'Original'}, parent=self, promotedSlotNames=['InputImage'] )
        opBatchPredictionPipeline = OperatorWrapper( OpPredictionPipeline, parent=self )
        
        # Create applets for batch workflow
        self.batchInputApplet = DataSelectionApplet(self, "Batch Prediction Input Selections", "BatchDataSelection", supportIlastik05Import=False, batchDataGui=True)
        self.batchResultsApplet = CountingDataExportApplet(self, "Batch Prediction Output Locations", opBatchPredictionPipeline, isBatch=True)

        # Expose in shell        
        self._applets.append(self.batchInputApplet)
        self._applets.append(self.batchResultsApplet)

        opBatchInputs = self.batchInputApplet.topLevelOperator
        opBatchResults = self.batchResultsApplet.topLevelOperator
        
        opBatchInputs.DatasetRoles.connect( opTrainingDataSelection.DatasetRoles )
        opBatchResults.ConstraintDataset.connect( opSelectFirstRole.Output )
        
        
        ## Connect Operators ##
        opTranspose = OpTransposeSlots( parent=self )
        opTranspose.OutputLength.setValue(1)
        opTranspose.Inputs.connect( opBatchInputs.DatasetGroup )
        
        # Provide dataset paths from data selection applet to the batch export applet
        opBatchResults.RawDatasetInfo.connect( opTranspose.Outputs[0] )
        opBatchResults.WorkingDirectory.connect( opBatchInputs.WorkingDirectory )
        
        # Connect (clone) the feature operator inputs from 
        #  the interactive workflow's features operator (which gets them from the GUI)
        opBatchFeatures.Scales.connect( opTrainingFeatures.Scales )
        opBatchFeatures.FeatureIds.connect( opTrainingFeatures.FeatureIds )
        opBatchFeatures.SelectionMatrix.connect( opTrainingFeatures.SelectionMatrix )
        
        # Classifier and LabelsCount are provided by the interactive workflow
        opBatchPredictionPipeline.Classifier.connect( opClassify.Classifier )
        opBatchPredictionPipeline.MaxLabel.connect( opClassify.MaxLabelValue )
        opBatchPredictionPipeline.FreezePredictions.setValue( False )
        
        # Provide these for the gui
        opBatchResults.RawData.connect( opBatchInputs.Image )
        opBatchResults.PmapColors.connect( opClassify.PmapColors )
        opBatchResults.LabelNames.connect( opClassify.LabelNames )
        opBatchResults.UpperBound.connect( opClassify.UpperBound )
        
        # Connect Image pathway:
        # Input Image -> Features Op -> Prediction Op -> Export
        opBatchFeatures.InputImage.connect( opBatchInputs.Image )
        opBatchPredictionPipeline.FeatureImages.connect( opBatchFeatures.OutputImage )
        
        opBatchResults.SelectionNames.setValue( ['Probabilities'] )        
        # opBatchResults.Inputs is indexed by [lane][selection],
        # Use OpTranspose to allow connection.
        opTransposeBatchInputs = OpTransposeSlots( parent=self )
        opTransposeBatchInputs.OutputLength.setValue(0)
        opTransposeBatchInputs.Inputs.resize(1)
        opTransposeBatchInputs.Inputs[0].connect( opBatchPredictionPipeline.HeadlessPredictionProbabilities ) # selection 0
        
        # Now opTransposeBatchInputs.Outputs is level-2 indexed by [lane][selection]
        opBatchResults.Inputs.connect( opTransposeBatchInputs.Outputs )

        # We don't actually need the cached path in the batch pipeline.
        # Just connect the uncached features here to satisfy the operator.
        opBatchPredictionPipeline.CachedFeatureImages.connect( opBatchFeatures.OutputImage )

        self.opBatchPredictionPipeline = opBatchPredictionPipeline
Exemplo n.º 6
0
    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super( CountingWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )
        self.stored_classifer = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument("--csv-export-file", help="Instead of exporting prediction density images, export total counts to the given csv path.")
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        self.projectMetadataApplet = ProjectMetadataApplet()

        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data" )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ['Raw Data']
        opDataSelection.DatasetRoles.setValue( role_names )

        self.featureSelectionApplet = FeatureSelectionApplet(self,
                                                             "Feature Selection",
                                                             "FeatureSelections")

        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)
        
        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export
        
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue( ['Probabilities'] )        

        self._applets = []
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)

        self._batch_input_args = None
        self._batch_export_args = None
        if appendBatchOperators:
            self.batchProcessingApplet = BatchProcessingApplet( self, 
                                                                "Batch Processing", 
                                                                self.dataSelectionApplet, 
                                                                self.dataExportApplet )
            self._applets.append(self.batchProcessingApplet)
            if unused_args:
                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args( unused_args )
    
        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))
Exemplo n.º 7
0
class CountingWorkflow(Workflow):
    workflowName = "Cell Density Counting"
    workflowDescription = "This is obviously self-explanatory."
    defaultAppletIndex = 1 # show DataSelection by default

    def __init__(self, shell, headless, workflow_cmdline_args, project_creation_args, appendBatchOperators=True, *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super( CountingWorkflow, self ).__init__( shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs )
        self.stored_classifer = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument("--csv-export-file", help="Instead of exporting prediction density images, export total counts to the given csv path.")
        self.parsed_counting_workflow_args, unused_args = parser.parse_known_args(workflow_cmdline_args)

        ######################
        # Interactive workflow
        ######################

        self.projectMetadataApplet = ProjectMetadataApplet()

        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data" )
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        role_names = ['Raw Data']
        opDataSelection.DatasetRoles.setValue( role_names )

        self.featureSelectionApplet = FeatureSelectionApplet(self,
                                                             "Feature Selection",
                                                             "FeatureSelections")

        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator

        self.dataExportApplet = CountingDataExportApplet(self, "Density Export", opCounting)
        
        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export
        
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue( ['Probabilities'] )        

        self._applets = []
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)

        self._batch_input_args = None
        self._batch_export_args = None
        if appendBatchOperators:
            self.batchProcessingApplet = BatchProcessingApplet( self, 
                                                                "Batch Processing", 
                                                                self.dataSelectionApplet, 
                                                                self.dataExportApplet )
            self._applets.append(self.batchProcessingApplet)
            if unused_args:
                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args( unused_args )
    
        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))


    @property
    def applets(self):
        return self._applets

    @property
    def imageNameListSlot(self):
        return self.dataSelectionApplet.topLevelOperator.ImageName

    def prepareForNewLane(self, laneIndex):
        """
        Overridden from Workflow base class.
        Called immediately before a new lane is added to the workflow.
        """
        # When the new lane is added, dirty notifications will propagate throughout the entire graph.
        # This means the classifier will be marked 'dirty' even though it is still usable.
        # Before that happens, let's store the classifier, so we can restore it at the end of connectLane(), below.
        opCounting = self.countingApplet.topLevelOperator
        if opCounting.classifier_cache.Output.ready() and \
           not opCounting.classifier_cache._dirty:
            self.stored_classifer = opCounting.classifier_cache.Output.value
        else:
            self.stored_classifer = None

    def handleNewLanesAdded(self):
        """
        Overridden from Workflow base class.
        Called immediately after a new lane is added to the workflow and initialized.
        """
        # Restore classifier we saved in prepareForNewLane() (if any)
        if self.stored_classifer is not None:
            self.countingApplet.topLevelOperator.classifier_cache.forceValue(self.stored_classifer)
            # Release reference
            self.stored_classifer = None

    def connectLane(self, laneIndex):
        ## Access applet operators
        opData = self.dataSelectionApplet.topLevelOperator.getLane(laneIndex)
        opTrainingFeatures = self.featureSelectionApplet.topLevelOperator.getLane(laneIndex)
        opCounting = self.countingApplet.topLevelOperator.getLane(laneIndex)
        opDataExport = self.dataExportApplet.topLevelOperator.getLane(laneIndex)


        #### connect input image
        opTrainingFeatures.InputImage.connect(opData.Image)

        opCounting.InputImages.connect(opData.Image)
        opCounting.FeatureImages.connect(opTrainingFeatures.OutputImage)
        opCounting.LabelsAllowedFlags.connect(opData.AllowLabels)
        opCounting.CachedFeatureImages.connect( opTrainingFeatures.CachedOutputImage )
        #opCounting.UserLabels.connect(opClassify.LabelImages)
        #opCounting.ForegroundLabels.connect(opObjExtraction.LabelImage)
        opDataExport.Inputs.resize(1)
        opDataExport.Inputs[0].connect( opCounting.HeadlessPredictionProbabilities )
        opDataExport.RawData.connect( opData.ImageGroup[0] )
        opDataExport.RawDatasetInfo.connect( opData.DatasetGroup[0] )

    def onProjectLoaded(self, projectManager):
        """
        Overridden from Workflow base class.  Called by the Project Manager.
        
        If the user provided command-line arguments, use them to configure 
        the workflow for batch mode and export all results.
        (This workflow's headless mode supports only batch mode for now.)
        """
        # Headless batch mode.
        if self._headless and self._batch_input_args and self._batch_export_args:
            self.dataExportApplet.configure_operator_with_parsed_args( self._batch_export_args )

            # If the user provided a csv_path via the command line,
            # overwrite the setting in the counting export operator.
            csv_path = self.parsed_counting_workflow_args.csv_export_file
            if csv_path:
                self.dataExportApplet.topLevelOperator.CsvFilepath.setValue(csv_path)

            if self.countingApplet.topLevelOperator.classifier_cache._dirty:
                logger.warn("Your project file has no classifier.  "
                            "A new classifier will be trained for this run.")
                
            logger.info("Beginning Batch Processing")
            self.batchProcessingApplet.run_export_from_parsed_args(self._batch_input_args)
            logger.info("Completed Batch Processing")
    
    def prepare_for_entire_export(self):
        """
        Customization hook for data export (including batch mode).
        """
        self.freeze_status = self.countingApplet.topLevelOperator.FreezePredictions.value
        self.countingApplet.topLevelOperator.FreezePredictions.setValue(False)
        # Create a new CSV file to write object counts into.
        self.csv_export_file = None
        if self.dataExportApplet.topLevelOperator.CsvFilepath.ready():
            csv_path = self.dataExportApplet.topLevelOperator.CsvFilepath.value
            logger.info("Exporting object counts to CSV: " + csv_path)
            self.csv_export_file = open(csv_path, 'w')
    
    def post_process_lane_export(self, lane_index):
        """
        Customization hook for data export (including batch mode).
        """
        # Write the object counts for this lane as a line in the CSV file.
        if self.csv_export_file:
            self.dataExportApplet.write_csv_results(self.csv_export_file, lane_index)
        
    def post_process_entire_export(self):
        """
        Customization hook for data export (including batch mode).
        """
        self.countingApplet.topLevelOperator.FreezePredictions.setValue(self.freeze_status)
        if self.csv_export_file:
            self.csv_export_file.close()

    def handleAppletStateUpdateRequested(self):
        """
        Overridden from Workflow base class
        Called when an applet has fired the :py:attr:`Applet.statusUpdateSignal`
        """
        # If no data, nothing else is ready.
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        input_ready = len(opDataSelection.ImageGroup) > 0 and not self.dataSelectionApplet.busy

        opFeatureSelection = self.featureSelectionApplet.topLevelOperator
        featureOutput = opFeatureSelection.OutputImage
        features_ready = input_ready and \
                         len(featureOutput) > 0 and  \
                         featureOutput[0].ready() and \
                         (TinyVector(featureOutput[0].meta.shape) > 0).all()

        opDataExport = self.dataExportApplet.topLevelOperator
        predictions_ready = features_ready and \
                            len(opDataExport.Inputs) > 0 and \
                            opDataExport.Inputs[0][0].ready() and \
                            (TinyVector(opDataExport.Inputs[0][0].meta.shape) > 0).all()

        self._shell.setAppletEnabled(self.featureSelectionApplet, input_ready)
        self._shell.setAppletEnabled(self.countingApplet, features_ready)
        self._shell.setAppletEnabled(self.dataExportApplet, predictions_ready and not self.dataExportApplet.busy)
        self._shell.setAppletEnabled(self.batchProcessingApplet, predictions_ready and not self.batchProcessingApplet.busy)
        
        # Lastly, check for certain "busy" conditions, during which we 
        #  should prevent the shell from closing the project.
        busy = False
        busy |= self.dataSelectionApplet.busy
        busy |= self.featureSelectionApplet.busy
        busy |= self.dataExportApplet.busy
        busy |= self.batchProcessingApplet.busy
        self._shell.enableProjectChanges( not busy )
Exemplo n.º 8
0
    def __init__(self,
                 shell,
                 headless,
                 workflow_cmdline_args,
                 project_creation_args,
                 appendBatchOperators=True,
                 *args,
                 **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super(CountingWorkflow, self).__init__(shell,
                                               headless,
                                               workflow_cmdline_args,
                                               project_creation_args,
                                               graph=graph,
                                               *args,
                                               **kwargs)

        ######################
        # Interactive workflow
        ######################

        self.projectMetadataApplet = ProjectMetadataApplet()

        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data",
                                                       batchDataGui=False,
                                                       force5d=False)
        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue(['Raw Data'])

        self.featureSelectionApplet = FeatureSelectionApplet(
            self, "Feature Selection", "FeatureSelections")

        #self.pcApplet = PixelClassificationApplet(self, "PixelClassification")
        self.countingApplet = CountingApplet(workflow=self)
        opCounting = self.countingApplet.topLevelOperator

        self.dataExportApplet = CountingDataExportApplet(
            self, "Density Export")

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.PmapColors.connect(opCounting.PmapColors)
        opDataExport.LabelNames.connect(opCounting.LabelNames)
        opDataExport.UpperBound.connect(opCounting.UpperBound)
        opDataExport.WorkingDirectory.connect(opDataSelection.WorkingDirectory)
        opDataExport.SelectionNames.setValue(['Probabilities'])

        self._applets = []
        self._applets.append(self.projectMetadataApplet)
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.featureSelectionApplet)
        self._applets.append(self.countingApplet)
        self._applets.append(self.dataExportApplet)

        if appendBatchOperators:
            # Create applets for batch workflow
            self.batchInputApplet = DataSelectionApplet(
                self,
                "Batch Prediction Input Selections",
                "BatchDataSelection",
                supportIlastik05Import=False,
                batchDataGui=True)
            self.batchResultsApplet = CountingDataExportApplet(
                self, "Batch Prediction Output Locations", isBatch=True)

            # Expose in shell
            self._applets.append(self.batchInputApplet)
            self._applets.append(self.batchResultsApplet)

            # Connect batch workflow (NOT lane-based)
            self._initBatchWorkflow()