def __init__( self, headless, workflow_cmdline_args, *args, **kwargs ):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super(ChaingraphTrackingWorkflow, self).__init__(headless=headless, graph=graph, *args, **kwargs)
        data_instructions = 'Use the "Raw Data" tab to load your intensity image(s).\n\n'\
                            'Use the "Prediction Maps" tab to load your pixel-wise probability image(s).'
        ## Create applets 
        self.dataSelectionApplet = DataSelectionApplet(self,
                                                       "Input Data",
                                                       "Input Data",
                                                       batchDataGui=False,
                                                       force5d=True,
                                                       instructionText=data_instructions,
                                                       max_lanes=1 )

        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue( ['Raw Data', 'Prediction Maps'] )
                
        self.thresholdTwoLevelsApplet = ThresholdTwoLevelsApplet( self, 
                                                                  "Threshold and Size Filter", 
                                                                  "ThresholdTwoLevels" )
        
        self.objectExtractionApplet = ObjectExtractionApplet( name="Object Feature Computation",
                                                              workflow=self, interactive=False )
        
        self.trackingApplet = ChaingraphTrackingApplet( workflow=self )
        
        self._applets = []                
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.thresholdTwoLevelsApplet)
        self._applets.append(self.objectExtractionApplet)
        self._applets.append(self.trackingApplet)
    def __init__(self, shell, headless, workflow_cmdline_args,
                 project_creation_args, *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs: del kwargs['graph']
        super(ChaingraphTrackingWorkflow, self).__init__(shell,
                                                         headless,
                                                         workflow_cmdline_args,
                                                         project_creation_args,
                                                         graph=graph,
                                                         *args,
                                                         **kwargs)
        data_instructions = 'Use the "Raw Data" tab to load your intensity image(s).\n\n'\
                            'Use the "Prediction Maps" tab to load your pixel-wise probability image(s).'
        ## Create applets
        self.dataSelectionApplet = DataSelectionApplet(
            self,
            "Input Data",
            "Input Data",
            forceAxisOrder=['txyzc'],
            instructionText=data_instructions,
            max_lanes=1)

        opDataSelection = self.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetRoles.setValue(['Raw Data', 'Prediction Maps'])

        self.thresholdTwoLevelsApplet = ThresholdTwoLevelsApplet(
            self, "Threshold and Size Filter", "ThresholdTwoLevels")

        self.objectExtractionApplet = ObjectExtractionApplet(
            name="Object Feature Computation",
            workflow=self,
            interactive=False)

        self.trackingApplet = ChaingraphTrackingApplet(workflow=self)
        opTracking = self.trackingApplet.topLevelOperator

        self.dataExportApplet = TrackingBaseDataExportApplet(
            self, "Tracking Result Export")

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.SelectionNames.setValue(['Tracking'])
        opDataExport.WorkingDirectory.connect(
            self.dataSelectionApplet.topLevelOperator.WorkingDirectory)

        self._applets = []
        self._applets.append(self.dataSelectionApplet)
        self._applets.append(self.thresholdTwoLevelsApplet)
        self._applets.append(self.objectExtractionApplet)
        self._applets.append(self.trackingApplet)
        self._applets.append(self.dataExportApplet)
    def __init__(self, shell, headless,
                 workflow_cmdline_args,
                 project_creation_args,
                 *args, **kwargs):
        graph = kwargs['graph'] if 'graph' in kwargs else Graph()
        if 'graph' in kwargs:
            del kwargs['graph']
        super(ObjectClassificationWorkflow, self).__init__(shell, headless, workflow_cmdline_args, project_creation_args, graph=graph, *args, **kwargs)
        self.stored_pixel_classifier = None
        self.stored_object_classifier = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument('--fillmissing', help="use 'fill missing' applet with chosen detection method", choices=['classic', 'svm', 'none'], default='none')
        parser.add_argument('--filter', help="pixel feature filter implementation.", choices=['Original', 'Refactored', 'Interpolated'], default='Original')
        parser.add_argument('--nobatch', help="do not append batch applets", action='store_true', default=False)
        
        parsed_creation_args, unused_args = parser.parse_known_args(project_creation_args)

        self.fillMissing = parsed_creation_args.fillmissing
        self.filter_implementation = parsed_creation_args.filter

        parsed_args, unused_args = parser.parse_known_args(workflow_cmdline_args)
        if parsed_args.fillmissing != 'none' and parsed_creation_args.fillmissing != parsed_args.fillmissing:
            logger.error( "Ignoring --fillmissing cmdline arg.  Can't specify a different fillmissing setting after the project has already been created." )
        
        if parsed_args.filter != 'Original' and parsed_creation_args.filter != parsed_args.filter:
            logger.error( "Ignoring --filter cmdline arg.  Can't specify a different filter setting after the project has already been created." )

        self.batch = not parsed_args.nobatch

        self._applets = []

        self.pcApplet = None
        self.projectMetadataApplet = ProjectMetadataApplet()
        self._applets.append(self.projectMetadataApplet)

        self.setupInputs()
        
        if self.fillMissing != 'none':
            self.fillMissingSlicesApplet = FillMissingSlicesApplet(
                self, "Fill Missing Slices", "Fill Missing Slices", self.fillMissing)
            self._applets.append(self.fillMissingSlicesApplet)

        if isinstance(self, ObjectClassificationWorkflowPixel):
            self.input_types = 'raw'
        elif isinstance(self, ObjectClassificationWorkflowBinary):
            self.input_types = 'raw+binary'
        elif isinstance( self, ObjectClassificationWorkflowPrediction ):
            self.input_types = 'raw+pmaps'
        
        # our main applets
        self.objectExtractionApplet = ObjectExtractionApplet(workflow=self, name = "Object Feature Selection")
        self.objectClassificationApplet = ObjectClassificationApplet(workflow=self)
        self.dataExportApplet = ObjectClassificationDataExportApplet(self, "Object Information Export")
        self.dataExportApplet.set_exporting_operator(self.objectClassificationApplet.topLevelOperator)

        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        #self.dataExportApplet.prepare_lane_for_export = self.prepare_lane_for_export
        self.dataExportApplet.post_process_lane_export = self.post_process_lane_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export
        
        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.WorkingDirectory.connect( self.dataSelectionApplet.topLevelOperator.WorkingDirectory )
        
        # See EXPORT_SELECTION_PREDICTIONS and EXPORT_SELECTION_PROBABILITIES, above
        export_selection_names = ['Object Predictions',
                                  'Object Probabilities',
                                  'Blockwise Object Predictions',
                                  'Blockwise Object Probabilities']
        if self.input_types == 'raw':
            # Re-configure to add the pixel probabilities option
            # See EXPORT_SELECTION_PIXEL_PROBABILITIES, above
            export_selection_names.append( 'Pixel Probabilities' )
        opDataExport.SelectionNames.setValue( export_selection_names )

        self._batch_export_args = None
        self._batch_input_args = None
        self._export_args = None
        self.batchProcessingApplet = None
        if self.batch:
            self.batchProcessingApplet = BatchProcessingApplet(self, 
                                                               "Batch Processing", 
                                                               self.dataSelectionApplet, 
                                                               self.dataExportApplet)
    
            if unused_args:
                # Additional export args (specific to the object classification workflow)
                export_arg_parser = argparse.ArgumentParser()
                export_arg_parser.add_argument( "--table_filename", help="The location to export the object feature/prediction CSV file.", required=False )
                export_arg_parser.add_argument( "--export_object_prediction_img", action="store_true" )
                export_arg_parser.add_argument( "--export_object_probability_img", action="store_true" )
                
                # TODO: Support this, too, someday?
                #export_arg_parser.add_argument( "--export_object_label_img", action="store_true" )
                
                if self.input_types == 'raw':
                    export_arg_parser.add_argument( "--export_pixel_probability_img", action="store_true" )
                self._export_args, unused_args = export_arg_parser.parse_known_args(unused_args)
                self._export_args.export_pixel_probability_img = self._export_args.export_pixel_probability_img or None

                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args( unused_args )
                self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args( unused_args )

                # For backwards compatibility, translate these special args into the standard syntax
                if self._export_args.export_object_prediction_img:
                    self._batch_input_args.export_source = "Object Predictions"
                if self._export_args.export_object_probability_img:
                    self._batch_input_args.export_source = "Object Probabilities"
                if self._export_args.export_pixel_probability_img:
                    self._batch_input_args.export_source = "Pixel Probabilities"


        self.blockwiseObjectClassificationApplet = BlockwiseObjectClassificationApplet(
            self, "Blockwise Object Classification", "Blockwise Object Classification")

        self._applets.append(self.objectExtractionApplet)
        self._applets.append(self.objectClassificationApplet)
        self._applets.append(self.dataExportApplet)
        if self.batchProcessingApplet:
            self._applets.append(self.batchProcessingApplet)
        self._applets.append(self.blockwiseObjectClassificationApplet)

        if unused_args:
            logger.warn("Unused command-line args: {}".format( unused_args ))
    def __init__(self, shell, headless, workflow_cmdline_args,
                 project_creation_args, *args, **kwargs):
        graph = kwargs.pop("graph") if "graph" in kwargs else Graph()
        super().__init__(shell,
                         headless,
                         workflow_cmdline_args,
                         project_creation_args,
                         graph=graph,
                         *args,
                         **kwargs)
        self.stored_object_classifier = None

        # Parse workflow-specific command-line args
        parser = argparse.ArgumentParser()
        parser.add_argument(
            "--fillmissing",
            help="use 'fill missing' applet with chosen detection method",
            choices=["classic", "svm", "none"],
            default="none",
        )
        parser.add_argument("--nobatch",
                            help="do not append batch applets",
                            action="store_true",
                            default=False)

        parsed_creation_args, unused_args = parser.parse_known_args(
            project_creation_args)

        self.fillMissing = parsed_creation_args.fillmissing

        parsed_args, unused_args = parser.parse_known_args(
            workflow_cmdline_args)
        if parsed_args.fillmissing != "none" and parsed_creation_args.fillmissing != parsed_args.fillmissing:
            logger.error(
                "Ignoring --fillmissing cmdline arg.  Can't specify a different fillmissing setting after the project has already been created."
            )

        self.batch = not parsed_args.nobatch

        self._applets = []

        self.createInputApplets()

        if self.fillMissing != "none":
            self.fillMissingSlicesApplet = FillMissingSlicesApplet(
                self, "Fill Missing Slices", "Fill Missing Slices",
                self.fillMissing)
            self._applets.append(self.fillMissingSlicesApplet)

        # our main applets
        self.objectExtractionApplet = ObjectExtractionApplet(
            workflow=self, name="Object Feature Selection")
        self.objectClassificationApplet = ObjectClassificationApplet(
            workflow=self)
        self._tableExporter = TableExporter(
            self.objectClassificationApplet.topLevelOperator)
        self.dataExportApplet = ObjectClassificationDataExportApplet(
            self,
            "Object Information Export",
            table_exporter=self._tableExporter)

        # Customization hooks
        self.dataExportApplet.prepare_for_entire_export = self.prepare_for_entire_export
        self.dataExportApplet.post_process_entire_export = self.post_process_entire_export

        opDataExport = self.dataExportApplet.topLevelOperator
        opDataExport.WorkingDirectory.connect(
            self.dataSelectionApplet.topLevelOperator.WorkingDirectory)

        opDataExport.SelectionNames.setValue(
            self.ExportNames.asDisplayNameList())

        self._batch_export_args = None
        self._batch_input_args = None
        self._export_args = None
        self.batchProcessingApplet = None

        self._applets.append(self.objectExtractionApplet)
        self._applets.append(self.objectClassificationApplet)
        self._applets.append(self.dataExportApplet)

        if self.batch:
            self.batchProcessingApplet = BatchProcessingApplet(
                self, "Batch Processing", self.dataSelectionApplet,
                self.dataExportApplet)
            self._applets.append(self.batchProcessingApplet)

            if unused_args:
                exportsArgParser, _ = self.exportsArgParser
                self._export_args, unused_args = exportsArgParser.parse_known_args(
                    unused_args)

                # We parse the export setting args first.  All remaining args are considered input files by the input applet.
                self._batch_export_args, unused_args = self.dataExportApplet.parse_known_cmdline_args(
                    unused_args)
                self._batch_input_args, unused_args = self.batchProcessingApplet.parse_known_cmdline_args(
                    unused_args)

                # For backwards compatibility, translate these special args into the standard syntax
                self._batch_input_args.export_source = self._export_args.export_source

        self.blockwiseObjectClassificationApplet = BlockwiseObjectClassificationApplet(
            self, "Blockwise Object Classification",
            "Blockwise Object Classification")
        self._applets.append(self.blockwiseObjectClassificationApplet)

        if unused_args:
            logger.warning("Unused command-line args: {}".format(unused_args))