Exemplo n.º 1
0
    def process(samples,
                sample_process_options,
                output_sample_types,
                debug,
                ct_sample=None):
        SPTF = SampleProcessor.Types

        sample_rnd_seed = np.random.randint(0x80000000)

        outputs = []
        for sample in samples:
            sample_bgr = sample.load_bgr()
            ct_sample_bgr = None
            ct_sample_mask = None
            h, w, c = sample_bgr.shape

            is_face_sample = sample.landmarks is not None

            if debug and is_face_sample:
                LandmarksProcessor.draw_landmarks(sample_bgr, sample.landmarks,
                                                  (0, 1, 0))

            params = imagelib.gen_warp_params(
                sample_bgr,
                sample_process_options.random_flip,
                rotation_range=sample_process_options.rotation_range,
                scale_range=sample_process_options.scale_range,
                tx_range=sample_process_options.tx_range,
                ty_range=sample_process_options.ty_range,
                rnd_seed=sample_rnd_seed)

            outputs_sample = []
            for opts in output_sample_types:

                resolution = opts.get('resolution', 0)
                types = opts.get('types', [])

                border_replicate = opts.get('border_replicate', True)
                random_sub_res = opts.get('random_sub_res', 0)
                normalize_std_dev = opts.get('normalize_std_dev', False)
                normalize_vgg = opts.get('normalize_vgg', False)
                motion_blur = opts.get('motion_blur', None)
                gaussian_blur = opts.get('gaussian_blur', None)

                ct_mode = opts.get('ct_mode', 'None')
                normalize_tanh = opts.get('normalize_tanh', False)

                img_type = SPTF.NONE
                target_face_type = SPTF.NONE
                face_mask_type = SPTF.NONE
                mode_type = SPTF.NONE
                for t in types:
                    if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
                        img_type = t
                    elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
                        target_face_type = t
                    elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
                        mode_type = t

                if img_type == SPTF.NONE:
                    raise ValueError('expected IMG_ type')

                if img_type == SPTF.IMG_LANDMARKS_ARRAY:
                    l = sample.landmarks
                    l = np.concatenate([
                        np.expand_dims(l[:, 0] / w, -1),
                        np.expand_dims(l[:, 1] / h, -1)
                    ], -1)
                    l = np.clip(l, 0.0, 1.0)
                    img = l
                elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                    pitch_yaw_roll = sample.pitch_yaw_roll
                    if pitch_yaw_roll is not None:
                        pitch, yaw, roll = pitch_yaw_roll
                    else:
                        pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll(
                            sample.landmarks)
                    if params['flip']:
                        yaw = -yaw

                    if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                        pitch = (pitch + 1.0) / 2.0
                        yaw = (yaw + 1.0) / 2.0
                        roll = (roll + 1.0) / 2.0

                    img = (pitch, yaw, roll)
                else:
                    if mode_type == SPTF.NONE:
                        raise ValueError('expected MODE_ type')

                    def do_transform(img, mask):
                        warp = (img_type == SPTF.IMG_WARPED
                                or img_type == SPTF.IMG_WARPED_TRANSFORMED)
                        transform = (img_type == SPTF.IMG_WARPED_TRANSFORMED
                                     or img_type == SPTF.IMG_TRANSFORMED)
                        flip = img_type != SPTF.IMG_WARPED

                        img = imagelib.warp_by_params(params, img, warp,
                                                      transform, flip,
                                                      border_replicate)
                        if mask is not None:
                            mask = imagelib.warp_by_params(
                                params, mask, warp, transform, flip, False)
                            if len(mask.shape) == 2:
                                mask = mask[..., np.newaxis]

                        return img, mask

                    img = sample_bgr

                    ### Prepare a mask
                    mask = None
                    if is_face_sample:
                        mask = sample.load_fanseg_mask(
                        )  #using fanseg_mask if exist

                        if mask is None:
                            if sample.eyebrows_expand_mod is not None:
                                mask = LandmarksProcessor.get_image_hull_mask(
                                    img.shape,
                                    sample.landmarks,
                                    eyebrows_expand_mod=sample.
                                    eyebrows_expand_mod)
                            else:
                                mask = LandmarksProcessor.get_image_hull_mask(
                                    img.shape, sample.landmarks)

                        if sample.ie_polys is not None:
                            sample.ie_polys.overlay_mask(mask)
                    ##################

                    if motion_blur is not None:
                        chance, mb_max_size = motion_blur
                        chance = np.clip(chance, 0, 100)

                        if np.random.randint(100) < chance:
                            img = imagelib.LinearMotionBlur(
                                img,
                                np.random.randint(mb_max_size) + 1,
                                np.random.randint(360))

                    if gaussian_blur is not None:
                        chance, kernel_max_size = gaussian_blur
                        chance = np.clip(chance, 0, 100)

                        if np.random.randint(100) < chance:
                            img = cv2.GaussianBlur(
                                img,
                                (np.random.randint(kernel_max_size) * 2 + 1, )
                                * 2, 0)

                    if is_face_sample and target_face_type != SPTF.NONE:
                        target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[
                            target_face_type]
                        if target_ft > sample.face_type:
                            raise Exception(
                                'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                                %
                                (sample.filename, sample.face_type, target_ft))

                        if sample.face_type == FaceType.MARK_ONLY:
                            #first warp to target facetype
                            img = cv2.warpAffine(
                                img,
                                LandmarksProcessor.get_transform_mat(
                                    sample.landmarks, sample.shape[0],
                                    target_ft),
                                (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_CUBIC)
                            mask = cv2.warpAffine(
                                mask,
                                LandmarksProcessor.get_transform_mat(
                                    sample.landmarks, sample.shape[0],
                                    target_ft),
                                (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_CUBIC)
                            #then apply transforms
                            img, mask = do_transform(img, mask)
                            img = np.concatenate((img, mask), -1)
                            img = cv2.resize(img, (resolution, resolution),
                                             cv2.INTER_CUBIC)
                        else:
                            img, mask = do_transform(img, mask)

                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, resolution, target_ft)
                            img = cv2.warpAffine(
                                img,
                                mat, (resolution, resolution),
                                borderMode=(cv2.BORDER_REPLICATE
                                            if border_replicate else
                                            cv2.BORDER_CONSTANT),
                                flags=cv2.INTER_CUBIC)
                            mask = cv2.warpAffine(
                                mask,
                                mat, (resolution, resolution),
                                borderMode=cv2.BORDER_CONSTANT,
                                flags=cv2.INTER_CUBIC)
                            img = np.concatenate((img, mask[..., None]), -1)

                    else:
                        img, mask = do_transform(img, mask)
                        img = np.concatenate((img, mask), -1)
                        img = cv2.resize(img, (resolution, resolution),
                                         cv2.INTER_CUBIC)

                    if random_sub_res != 0:
                        sub_size = resolution - random_sub_res
                        rnd_state = np.random.RandomState(sample_rnd_seed +
                                                          random_sub_res)
                        start_x = rnd_state.randint(sub_size + 1)
                        start_y = rnd_state.randint(sub_size + 1)
                        img = img[start_y:start_y + sub_size,
                                  start_x:start_x + sub_size, :]

                    img = np.clip(img, 0, 1).astype(np.float32)
                    img_bgr = img[..., 0:3]
                    img_mask = img[..., 3:4]

                    if ct_mode is not None and ct_sample is not None:
                        if ct_sample_bgr is None:
                            ct_sample_bgr = ct_sample.load_bgr()

                        ct_sample_bgr_resized = cv2.resize(
                            ct_sample_bgr, (resolution, resolution),
                            cv2.INTER_LINEAR)

                        if ct_mode == 'lct':
                            img_bgr = imagelib.linear_color_transfer(
                                img_bgr, ct_sample_bgr_resized)
                            img_bgr = np.clip(img_bgr, 0.0, 1.0)
                        elif ct_mode == 'rct':
                            img_bgr = imagelib.reinhard_color_transfer(
                                np.clip((img_bgr * 255).astype(np.uint8), 0,
                                        255),
                                np.clip((ct_sample_bgr_resized * 255).astype(
                                    np.uint8), 0, 255))
                            img_bgr = np.clip(
                                img_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                        elif ct_mode == 'mkl':
                            img_bgr = imagelib.color_transfer_mkl(
                                img_bgr, ct_sample_bgr_resized)
                        elif ct_mode == 'idt':
                            img_bgr = imagelib.color_transfer_idt(
                                img_bgr, ct_sample_bgr_resized)
                        elif ct_mode == 'sot':
                            img_bgr = imagelib.color_transfer_sot(
                                img_bgr, ct_sample_bgr_resized)
                            img_bgr = np.clip(img_bgr, 0.0, 1.0)

                    if normalize_std_dev:
                        img_bgr = (img_bgr - img_bgr.mean(
                            (0, 1))) / img_bgr.std((0, 1))
                    elif normalize_vgg:
                        img_bgr = np.clip(img_bgr * 255, 0, 255)
                        img_bgr[:, :, 0] -= 103.939
                        img_bgr[:, :, 1] -= 116.779
                        img_bgr[:, :, 2] -= 123.68

                    if mode_type == SPTF.MODE_BGR:
                        img = img_bgr
                    elif mode_type == SPTF.MODE_BGR_SHUFFLE:
                        rnd_state = np.random.RandomState(sample_rnd_seed)
                        img = np.take(img_bgr,
                                      rnd_state.permutation(img_bgr.shape[-1]),
                                      axis=-1)

                    elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
                        rnd_state = np.random.RandomState(sample_rnd_seed)
                        hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)
                        h, s, v = cv2.split(hsv)
                        h = (h + rnd_state.randint(360)) % 360
                        s = np.clip(s + rnd_state.random() - 0.5, 0, 1)
                        v = np.clip(v + rnd_state.random() - 0.5, 0, 1)
                        hsv = cv2.merge([h, s, v])
                        img = np.clip(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), 0,
                                      1)
                    elif mode_type == SPTF.MODE_G:
                        img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)[...,
                                                                        None]
                    elif mode_type == SPTF.MODE_GGG:
                        img = np.repeat(
                            np.expand_dims(
                                cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1),
                            (3, ), -1)
                    elif mode_type == SPTF.MODE_M and is_face_sample:
                        img = img_mask

                    if not debug:
                        if normalize_tanh:
                            img = np.clip(img * 2.0 - 1.0, -1.0, 1.0)
                        else:
                            img = np.clip(img, 0.0, 1.0)

                outputs_sample.append(img)
            outputs += [outputs_sample]

        return outputs
Exemplo n.º 2
0
def ConvertMaskedFace(predictor_func, predictor_input_shape, cfg, frame_info,
                      img_bgr_uint8, img_bgr, img_face_landmarks):
    img_size = img_bgr.shape[1], img_bgr.shape[0]
    img_face_mask_a = LandmarksProcessor.get_image_hull_mask(
        img_bgr.shape, img_face_landmarks)

    if cfg.mode == 'original':
        if cfg.export_mask_alpha:
            img_bgr = np.concatenate([img_bgr, img_face_mask_a], -1)
        return img_bgr, img_face_mask_a

    out_img = img_bgr.copy()
    out_merging_mask = None

    output_size = predictor_input_shape[0]
    if cfg.super_resolution_mode != 0:
        output_size *= 2

    face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks,
                                                    output_size,
                                                    face_type=cfg.face_type)
    face_output_mat = LandmarksProcessor.get_transform_mat(
        img_face_landmarks,
        output_size,
        face_type=cfg.face_type,
        scale=1.0 + 0.01 * cfg.output_face_scale)

    dst_face_bgr = cv2.warpAffine(img_bgr,
                                  face_mat, (output_size, output_size),
                                  flags=cv2.INTER_CUBIC)
    dst_face_bgr = np.clip(dst_face_bgr, 0, 1)

    dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a,
                                       face_mat, (output_size, output_size),
                                       flags=cv2.INTER_CUBIC)
    dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)

    predictor_input_bgr = cv2.resize(dst_face_bgr, predictor_input_shape[0:2])

    predicted = predictor_func(predictor_input_bgr)
    if isinstance(predicted, tuple):
        #converter return bgr,mask
        prd_face_bgr = np.clip(predicted[0], 0, 1.0)
        prd_face_mask_a_0 = np.clip(predicted[1], 0, 1.0)
        predictor_masked = True
    else:
        #converter return bgr only, using dst mask
        prd_face_bgr = np.clip(predicted, 0, 1.0)
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       predictor_input_shape[0:2])
        predictor_masked = False

    if cfg.super_resolution_mode:
        prd_face_bgr = cfg.superres_func(cfg.super_resolution_mode,
                                         prd_face_bgr)
        prd_face_bgr = np.clip(prd_face_bgr, 0, 1)

        if predictor_masked:
            prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)
        else:
            prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)

    if cfg.mask_mode == 2:  #dst
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)
    elif cfg.mask_mode >= 3 and cfg.mask_mode <= 8:

        if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
            prd_face_fanseg_bgr = cv2.resize(prd_face_bgr,
                                             (cfg.fanseg_input_size, ) * 2)
            prd_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, prd_face_fanseg_bgr)
            FAN_prd_face_mask_a_0 = cv2.resize(prd_face_fanseg_mask,
                                               (output_size, output_size),
                                               cv2.INTER_CUBIC)

        if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:

            full_face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks,
                cfg.fanseg_input_size,
                face_type=FaceType.FULL)
            dst_face_fanseg_bgr = cv2.warpAffine(img_bgr,
                                                 full_face_fanseg_mat,
                                                 (cfg.fanseg_input_size, ) * 2,
                                                 flags=cv2.INTER_CUBIC)
            dst_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, dst_face_fanseg_bgr)

            if cfg.face_type == FaceType.FULL:
                FAN_dst_face_mask_a_0 = cv2.resize(dst_face_fanseg_mask,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)
            else:
                face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                    img_face_landmarks,
                    cfg.fanseg_input_size,
                    face_type=cfg.face_type)

                fanseg_rect_corner_pts = np.array(
                    [[0, 0], [cfg.fanseg_input_size - 1, 0],
                     [0, cfg.fanseg_input_size - 1]],
                    dtype=np.float32)
                a = LandmarksProcessor.transform_points(fanseg_rect_corner_pts,
                                                        face_fanseg_mat,
                                                        invert=True)
                b = LandmarksProcessor.transform_points(
                    a, full_face_fanseg_mat)
                m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
                FAN_dst_face_mask_a_0 = cv2.warpAffine(
                    dst_face_fanseg_mask,
                    m, (cfg.fanseg_input_size, ) * 2,
                    flags=cv2.INTER_CUBIC)
                FAN_dst_face_mask_a_0 = cv2.resize(FAN_dst_face_mask_a_0,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)
        """
        if cfg.mask_mode == 8: #FANCHQ-dst
            full_face_fanchq_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanchq_input_size, face_type=FaceType.FULL)
            dst_face_fanchq_bgr = cv2.warpAffine(img_bgr, full_face_fanchq_mat, (cfg.fanchq_input_size,)*2, flags=cv2.INTER_CUBIC )
            dst_face_fanchq_mask = cfg.fanchq_extract_func( FaceType.FULL, dst_face_fanchq_bgr )

            if cfg.face_type == FaceType.FULL:
                FANCHQ_dst_face_mask_a_0 = cv2.resize (dst_face_fanchq_mask, (output_size,output_size), cv2.INTER_CUBIC)
            else:
                face_fanchq_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanchq_input_size, face_type=cfg.face_type)

                fanchq_rect_corner_pts = np.array ( [ [0,0], [cfg.fanchq_input_size-1,0], [0,cfg.fanchq_input_size-1] ], dtype=np.float32 )
                a = LandmarksProcessor.transform_points (fanchq_rect_corner_pts, face_fanchq_mat, invert=True )
                b = LandmarksProcessor.transform_points (a, full_face_fanchq_mat )
                m = cv2.getAffineTransform(b, fanchq_rect_corner_pts)
                FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanchq_mask, m, (cfg.fanchq_input_size,)*2, flags=cv2.INTER_CUBIC )
                FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
        """
        if cfg.mask_mode == 3:  #FAN-prd
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0
        elif cfg.mask_mode == 4:  #FAN-dst
            prd_face_mask_a_0 = FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 5:
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 6:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 7:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        #elif cfg.mask_mode == 8: #FANCHQ-dst
        #    prd_face_mask_a_0 = FANCHQ_dst_face_mask_a_0

    prd_face_mask_a_0[prd_face_mask_a_0 < 0.001] = 0.0

    prd_face_mask_a = prd_face_mask_a_0[..., np.newaxis]
    prd_face_mask_aaa = np.repeat(prd_face_mask_a, (3, ), axis=-1)

    img_face_mask_aaa = cv2.warpAffine(prd_face_mask_aaa,
                                       face_output_mat,
                                       img_size,
                                       np.zeros(img_bgr.shape,
                                                dtype=np.float32),
                                       flags=cv2.WARP_INVERSE_MAP
                                       | cv2.INTER_CUBIC)
    img_face_mask_aaa = np.clip(img_face_mask_aaa, 0.0, 1.0)
    img_face_mask_aaa[img_face_mask_aaa <= 0.1] = 0.0  #get rid of noise

    if 'raw' in cfg.mode:
        face_corner_pts = np.array(
            [[0, 0], [output_size - 1, 0], [output_size - 1, output_size - 1],
             [0, output_size - 1]],
            dtype=np.float32)
        square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
        cv2.fillConvexPoly(square_mask, \
                           LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
                           (1,1,1) )

        if cfg.mode == 'raw-rgb':
            out_merging_mask = square_mask

        if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)

        if cfg.mode == 'raw-rgb-mask':
            out_img = np.concatenate(
                [out_img,
                 np.expand_dims(img_face_mask_aaa[:, :, 0], -1)], -1)
            out_merging_mask = square_mask

        elif cfg.mode == 'raw-mask-only':
            out_img = img_face_mask_aaa
            out_merging_mask = img_face_mask_aaa
        elif cfg.mode == 'raw-predicted-only':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     np.zeros(img_bgr.shape, dtype=np.float32),
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_merging_mask = square_mask

        out_img = np.clip(out_img, 0.0, 1.0)
    else:
        #averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
        ar = []
        for i in range(1, 10):
            maxregion = np.argwhere(img_face_mask_aaa > i / 10.0)
            if maxregion.size != 0:
                miny, minx = maxregion.min(axis=0)[:2]
                maxy, maxx = maxregion.max(axis=0)[:2]
                lenx = maxx - minx
                leny = maxy - miny
                if min(lenx, leny) >= 4:
                    ar += [[lenx, leny]]

        if len(ar) > 0:
            lenx, leny = np.mean(ar, axis=0)
            lowest_len = min(lenx, leny)

            if cfg.erode_mask_modifier != 0:
                ero = int(lowest_len * (0.126 - lowest_len * 0.00004551365) *
                          0.01 * cfg.erode_mask_modifier)
                if ero > 0:
                    img_face_mask_aaa = cv2.erode(img_face_mask_aaa,
                                                  cv2.getStructuringElement(
                                                      cv2.MORPH_ELLIPSE,
                                                      (ero, ero)),
                                                  iterations=1)
                elif ero < 0:
                    img_face_mask_aaa = cv2.dilate(img_face_mask_aaa,
                                                   cv2.getStructuringElement(
                                                       cv2.MORPH_ELLIPSE,
                                                       (-ero, -ero)),
                                                   iterations=1)

            if cfg.clip_hborder_mask_per > 0:  #clip hborder before blur
                prd_hborder_rect_mask_a = np.ones(prd_face_mask_a.shape,
                                                  dtype=np.float32)
                prd_border_size = int(prd_hborder_rect_mask_a.shape[1] *
                                      cfg.clip_hborder_mask_per)
                prd_hborder_rect_mask_a[:, 0:prd_border_size, :] = 0
                prd_hborder_rect_mask_a[:, -prd_border_size:, :] = 0
                prd_hborder_rect_mask_a[-prd_border_size:, :, :] = 0
                prd_hborder_rect_mask_a = np.expand_dims(
                    cv2.blur(prd_hborder_rect_mask_a,
                             (prd_border_size, prd_border_size)), -1)

                img_prd_hborder_rect_mask_a = cv2.warpAffine(
                    prd_hborder_rect_mask_a, face_output_mat, img_size,
                    np.zeros(img_bgr.shape, dtype=np.float32),
                    cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
                img_prd_hborder_rect_mask_a = np.expand_dims(
                    img_prd_hborder_rect_mask_a, -1)
                img_face_mask_aaa *= img_prd_hborder_rect_mask_a
                img_face_mask_aaa = np.clip(img_face_mask_aaa, 0, 1.0)

            if cfg.blur_mask_modifier > 0:
                blur = int(lowest_len * 0.10 * 0.01 * cfg.blur_mask_modifier)
                if blur > 0:
                    img_face_mask_aaa = cv2.blur(img_face_mask_aaa,
                                                 (blur, blur))

            img_face_mask_aaa = np.clip(img_face_mask_aaa, 0, 1.0)

            if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:  #rct
                    prd_face_bgr = imagelib.reinhard_color_transfer(
                        (prd_face_bgr * 255).astype(np.uint8),
                        (dst_face_bgr * 255).astype(np.uint8),
                        source_mask=prd_face_mask_a,
                        target_mask=prd_face_mask_a)
                    prd_face_bgr = np.clip(
                        prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)

                elif cfg.color_transfer_mode == 2:  #lct
                    prd_face_bgr = imagelib.linear_color_transfer(
                        prd_face_bgr, dst_face_bgr)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 3:  #mkl
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    prd_face_bgr = imagelib.color_transfer_sot(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    prd_face_bgr = imagelib.color_transfer_mix(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)

            if cfg.mode == 'hist-match-bw':
                prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
                prd_face_bgr = np.repeat(np.expand_dims(prd_face_bgr, -1),
                                         (3, ), -1)

            if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
                hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1, ),
                                      dtype=np.float32)

                if cfg.masked_hist_match:
                    hist_mask_a *= prd_face_mask_a

                white = (1.0 - hist_mask_a) * np.ones(
                    prd_face_bgr.shape[:2] + (1, ), dtype=np.float32)

                hist_match_1 = prd_face_bgr * hist_mask_a + white
                hist_match_1[hist_match_1 > 1.0] = 1.0

                hist_match_2 = dst_face_bgr * hist_mask_a + white
                hist_match_2[hist_match_1 > 1.0] = 1.0

                prd_face_bgr = imagelib.color_hist_match(
                    hist_match_1, hist_match_2,
                    cfg.hist_match_threshold).astype(dtype=np.float32)

            if cfg.mode == 'hist-match-bw':
                prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)

            if 'seamless' in cfg.mode:
                #mask used for cv2.seamlessClone
                img_face_mask_a = img_face_mask_aaa[..., 0:1]

                img_face_seamless_mask_a = None
                for i in range(1, 10):
                    a = img_face_mask_a > i / 10.0
                    if len(np.argwhere(a)) == 0:
                        continue
                    img_face_seamless_mask_a = img_face_mask_a.copy()
                    img_face_seamless_mask_a[a] = 1.0
                    img_face_seamless_mask_a[img_face_seamless_mask_a <= i /
                                             10.0] = 0.0
                    break

            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)

            out_img = np.clip(out_img, 0.0, 1.0)

            if 'seamless' in cfg.mode:
                try:
                    #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
                    l, t, w, h = cv2.boundingRect(
                        (img_face_seamless_mask_a * 255).astype(np.uint8))
                    s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
                    out_img = cv2.seamlessClone(
                        (out_img * 255).astype(np.uint8), img_bgr_uint8,
                        (img_face_seamless_mask_a * 255).astype(np.uint8),
                        (s_maskx, s_masky), cv2.NORMAL_CLONE)
                    out_img = out_img.astype(dtype=np.float32) / 255.0
                except Exception as e:
                    #seamlessClone may fail in some cases
                    e_str = traceback.format_exc()

                    if 'MemoryError' in e_str:
                        raise Exception(
                            "Seamless fail: " + e_str
                        )  #reraise MemoryError in order to reprocess this data by other processes
                    else:
                        print("Seamless fail: " + e_str)

            out_img = img_bgr * (1 - img_face_mask_aaa) + (out_img *
                                                           img_face_mask_aaa)

            out_face_bgr = cv2.warpAffine(out_img, face_mat,
                                          (output_size, output_size))

            if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:
                    face_mask_aaa = cv2.warpAffine(img_face_mask_aaa, face_mat,
                                                   (output_size, output_size))

                    out_face_bgr = imagelib.reinhard_color_transfer(
                        (out_face_bgr * 255).astype(np.uint8),
                        (dst_face_bgr * 255).astype(np.uint8),
                        source_mask=face_mask_aaa,
                        target_mask=face_mask_aaa)
                    out_face_bgr = np.clip(
                        out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                elif cfg.color_transfer_mode == 2:  #lct
                    out_face_bgr = imagelib.linear_color_transfer(
                        out_face_bgr, dst_face_bgr)
                    out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 3:  #mkl
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    out_face_bgr = imagelib.color_transfer_sot(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                    out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    out_face_bgr = imagelib.color_transfer_mix(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)

            if cfg.mode == 'seamless-hist-match':
                out_face_bgr = imagelib.color_hist_match(
                    out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)

            cfg_mp = cfg.motion_blur_power / 100.0
            if cfg_mp != 0:
                k_size = int(frame_info.motion_power * cfg_mp)
                if k_size >= 1:
                    k_size = np.clip(k_size + 1, 2, 50)
                    if cfg.super_resolution_mode:
                        k_size *= 2
                    out_face_bgr = imagelib.LinearMotionBlur(
                        out_face_bgr, k_size, frame_info.motion_deg)

            if cfg.blursharpen_amount != 0:
                out_face_bgr = cfg.blursharpen_func(out_face_bgr,
                                                    cfg.sharpen_mode, 3,
                                                    cfg.blursharpen_amount)

            if cfg.image_denoise_power != 0:
                n = cfg.image_denoise_power
                while n > 0:
                    img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
                    if int(n / 100) != 0:
                        img_bgr = img_bgr_denoised
                    else:
                        pass_power = (n % 100) / 100.0
                        img_bgr = img_bgr * (
                            1.0 - pass_power) + img_bgr_denoised * pass_power
                    n = max(n - 10, 0)

            if cfg.bicubic_degrade_power != 0:
                p = 1.0 - cfg.bicubic_degrade_power / 101.0
                img_bgr_downscaled = cv2.resize(
                    img_bgr, (int(img_size[0] * p), int(img_size[1] * p)),
                    cv2.INTER_CUBIC)
                img_bgr = cv2.resize(img_bgr_downscaled, img_size,
                                     cv2.INTER_CUBIC)

            new_out = cv2.warpAffine(out_face_bgr, face_mat, img_size,
                                     img_bgr.copy(),
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_img = np.clip(
                img_bgr * (1 - img_face_mask_aaa) +
                (new_out * img_face_mask_aaa), 0, 1.0)

            if cfg.color_degrade_power != 0:
                out_img_reduced = imagelib.reduce_colors(out_img, 256)
                if cfg.color_degrade_power == 100:
                    out_img = out_img_reduced
                else:
                    alpha = cfg.color_degrade_power / 100.0
                    out_img = (out_img * (1.0 - alpha) +
                               out_img_reduced * alpha)

        out_merging_mask = img_face_mask_aaa

    return out_img, out_merging_mask[..., 0:1]