Exemplo n.º 1
0
def main(cur_params):
  # fetch the data provider
  for i, cpf in enumerate(cur_params['checkpoints']):
    checkpoint = pickle.load(open(cpf, 'rb'))
    if 'model' in checkpoint:
        model_init_gen_from = checkpoint.get('model',{})
    else:
        model_init_gen_from = checkpoint.get('modelGen',{})
    model_init_eval_from = checkpoint.get('modelEval',{})
    params = checkpoint['params']

    # Load data provider and copy misc
    if i == 0:
        dp = getDataProvider(params)
        evaluator = decodeEvaluator(params)
        modelEval = evaluator.model_th
        (eval_inp_list, f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params)

    misc = checkpoint['misc']

    zipp(model_init_eval_from, modelEval)
    evaluator.use_noise.set_value(1.)

    print '----------------------- Running model %s  -------------------------------'%(cpf.split('_')[-3])
    print 'Evaluating GT 5 vs Negative samples from GT'
    eval_discrm_gen('val', dp, params, f_pred_fns[0], misc, probs = [0.5, 0.5, 0.0])
    print '-------------------------------------------------------------------------'
    print 'Evaluating GT vs repeated GT'
    eval_discrm_gen('val', dp, params, f_pred_fns[0], misc, probs = [0.5, 0.0, 0.5])
    print '-------------------------------------------------------------------------'
def main(params):
    rootpath = '/home/lgp105b/xirong/VisualSearch'
    checkpoint_path = params['checkpoint_path']
    checkpoint_path = '/home/lgp105b/weiyu/demo/neuraltalk/cv/model_checkpoint_flickr8kchn_lgp105b-OptiPlex-9020_baseline_7.86.p'
    dataset = params['dataset']
    dataset = 'flickr8k'
    version = 'chn'
    output_path = '%s.%s.id.score.predict.txt'%(dataset,version)
    vob = load_chinese_vob(rootpath,dataset,version)
    sentgen = ChnSentGenerator(checkpoint_path)

    dp = getDataProvider(dataset)
    fout = codecs.open(output_path,'w','utf-8')
    for img in dp.iterImages(split = 'test',max_images=-1):
        (score,sent) = sentgen.predict(img['feat'])
        try:
        #if not sent[0].isalpha():
            sent = back_to_words(sent.split(),vob)
        except:
            print sent
        #print sent
        #fout.write(sent.encode('utf-8'))
        fout.write('%s %d %s\n'%(img['filename'],score,sent.decode('utf-8')))
        #print img['filename'],score,sent
    fout.close()
def main(params):
    checkpoint_path = params['checkpoint_path']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dp = getDataProvider(checkpoint_params)

	bar = progressbar.ProgressBar(maxval=dp.getSplitSize('train'), \
	    widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
    def __init__(self, dataset, nbOfTopics, rate,hidden,layers, pert):
        '''
        :param dataset: dataset to use
        :param nbOfTopics: number of topics to use
        :param rate: learning rate
        :param hidden: number of hidden neurons
        :param layers: number of hidden layers. Currently not used since one hidden layer is hardcoded
        :param pert: whether or not to use the perturbed dataset
        '''
        self.nbOfTopics=nbOfTopics
        self.dataset = dataset
        self.dataprovider = getDataProvider(dataset, pert)
        self.pert = pert

        self.hidden = hidden
        self.rate = rate
def main(params):

  # load the checkpoint
  result_struct = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading result data %s' % (result_struct, )
  resultDb = json.load(open(result_struct,'r'))

  checkpoint_params = resultDb['checkpoint_params']

  dataset = checkpoint_params['dataset']
  dump_folder = params['dump_folder']

  if 'image_feat_size' not in  checkpoint_params:
    checkpoint_params['image_feat_size'] = 4096 

  if dump_folder:
    print 'creating dump folder ' + dump_folder
    os.system('mkdir -p ' + dump_folder)
    
  # fetch the data provider
  dp = getDataProvider(checkpoint_params)
  
  fTrn = open('dBSentFile', 'w')
  fTst = open('queryFile', 'w')
  n = 0
  for img in dp.iterImages(split = 'train', max_images = max_images):
    n += 1
    print 'image %d/%d:' % (n, max_images)
    fTrn.writelines("%s\n"% ' '.join(x['tokens']) for x in img['sentences'])

  fTst.writelines("%s\n"% x['candidate']['text'] for x in resultDb['imgblobs'])

  
  fNNRes = open('Brute_SearchResult_FULL.txt')
  tups = re.findall(pattern,f.read())
  fNNRes.close()

  for t in tups:
    trnIdx = int(t[1])
    tstIdx = int(t[0])
    imgIdx = floor(trnIdx / 5)
    senIdx = trnIdx - imgIdx * 5

    nnSent = 
Exemplo n.º 6
0
def test_linear(args):
    if args.random_seed is not None:
        numpy.random.seed(args.random_seed)
    D = Cdist()
    model = cPickle.load(gzip.open('model.dat.gz'))
    vectorizer = cPickle.load(gzip.open('vec.pkl.gz'))
    scaler = cPickle.load(gzip.open('scaler.pkl.gz'))
    real_stdout = sys.stdout
    with open('/dev/null', 'w') as f:
        sys.stdout = f
        d = dp.getDataProvider(args.dataset)
    sys.stdout = real_stdout
    pairs = list(d.iterImageSentencePair(split='val'))
    texts = [ pair['sentence']['raw'] for pair in pairs ]
    images    = list(d.iterImages(split='val')) # With pairs we'd get duplicate images!
    X = vectorizer.transform(texts)
    Y_pred = numpy.asarray(model.predict(X), dtype='float32') # candidates are identical to Y_pred
    if args.paraphrase:
        #distances = D.cosine_distance(Y_pred, Y_pred)
        distances = cdist(Y_pred, Y_pred, metric='cosine')
        N = 0
        score = 0.0
        for j,row in enumerate(distances):
            imgid = pairs[j]['sentence']['imgid']
            sentid = pairs[j]['sentence']['sentid']
            best = numpy.argsort(row)            
            top4 = sum([ imgid == pairs[b]['sentence']['imgid'] for b 
                         in best[0:5] if sentid != pairs[b]['sentence']['sentid'] ][0:4]) # exclude self
            score = score + top4/4.0
            N = N+1
        print args.iter_predict, N, score/N
 
    else:
        Y = numpy.array([ image['feat'] for image in images], dtype='float32')
        distances = D.cosine_distance(Y_pred, Y)
        errors = 0
        N = 0
        for j,row in enumerate(distances):
            imgid = pairs[j]['sentence']['imgid']
            best = numpy.argsort(row)
            top5 = [ images[b]['imgid'] for b in best[:5] ]
            N = N+1
            if imgid not in top5:
                errors = errors + 1
        print errors, N, errors/N
Exemplo n.º 7
0
def main(params):
    rootpath = '/home/lgp105b/xirong/VisualSearch'
    collection = 'flickr8k'
    checkpoint_path = params['checkpoint_path']
    #checkpoint_path = '/home/lgp105b/weiyu/demo/neuraltalk/cv/model_checkpoint_flickr8k_lgp105b-OptiPlex-9020_baseline_7.86.p'
    dataset = params['dataset']
    #dataset = 'flickr8k'
    output_path = os.path.join(rootpath,collection,'prediction','%s.id.score.predict.txt'%(dataset))
    sentgen = SentGenerator(checkpoint_path)

    dp = getDataProvider(dataset)
    fout = codecs.open(output_path,'w','utf-8')
    for img in dp.iterImages(split = 'test',max_images=-1):
        (score,sent) = sentgen.predict(img['feat'])
        #print sent
        #fout.write(sent.encode('utf-8'))
        fout.write('%s %.4f %s\n'%(img['filename'],score,sent))
        #print img['filename'],score,sent
    fout.close()
Exemplo n.º 8
0
def train_linear(args):
    p = dp.getDataProvider(args.dataset)
    data = list(p.iterImageSentencePair(split='train'))
    texts = [ pair['sentence']['raw'] for pair in data ]
    images = [ pair['image']['feat'] for pair in data ]
    analyzer = 'char' if args.character else 'word'
    vectorizer = CountVectorizer(min_df=args.word_freq_threshold, analyzer=analyzer, lowercase=True,
                                 ngram_range=(1,1))
    X = vectorizer.fit_transform(texts)
    scaler = StandardScaler() if args.scaler == 'standard' else NoScaler()
    sys.stderr.write("BOW computed\n")
    Y = scaler.fit_transform(numpy.array(images))
    
    
    model = Ridge(solver='lsqr', alpha=args.ridge_alpha)
    sys.stderr.write("Starting training\n")
    model.fit(X,Y)
    sys.stderr.write("Saving model\n")
    cPickle.dump(model, gzip.open('model.dat.gz','w'))
    cPickle.dump(vectorizer, gzip.open('vec.pkl.gz','w'))
    cPickle.dump(scaler, gzip.open('vec.pkl.gz', 'w'))
def preprocess():
    '''
    generate the image and sentence matrices of the given dataset and write it to disk
    :return:
    '''
    dataset = "flickr30k" # hardcoded
    os.chdir("..")
    dataprovider = getDataProvider(dataset, pert=1)
    os.chdir("cca")
    img_sentence_pair_generator = dataprovider.iterImageSentencePair()
    print "Reading Vocabulary..."
    vocabulary = readVocabulary("training_dictionary_pert.txt")
    print "Done"
    print "Creating sentence vectors..."
    occurrences, idf, images = getOccurenceVectorsAndImages(vocabulary, img_sentence_pair_generator)
    print "Done"
    print "Weighing vectors"
    weightedVectors = weight_tfidf(occurrences, idf)
    pair = image_sentence_matrix_pair(images, weightedVectors)
    pair_file = open("imagesentencematrix_pert.p", 'wb')
    pickle.dump(pair, pair_file)
    pair_file.close()
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model = checkpoint['model']
  dump_folder = params['dump_folder']

  if dump_folder:
    print 'creating dump folder ' + dump_folder
    os.system('mkdir -p ' + dump_folder)
    
  # fetch the data provider
  dp = getDataProvider(dataset, params['pert'])
  dp.load_topic_models(dataset, params['lda'])

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  ixtoword = checkpoint['ixtoword']

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)
  n = 0
  all_references = []
  all_candidates = []

  # Added for CCA and perturbed dataset
  if params['cca']:
    pert_str = ''
    if params['pert']:
      pert_str = '_pert'
    ccaweights = np.loadtxt('cca/imageprojection_'+str(params['cca'])+pert_str+'.txt', delimiter = ',')
    misc['ccaweights'] = ccaweights
  else:
    ccaweights = None

  for img in dp.iterImages(split = 'test', max_images = max_images):
    n+=1
    print 'image %d/%d:' % (n, max_images)
    references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    kwparams = { 'beam_size' : params['beam_size'], 'normalization': params['normalization'], 'ccaweights' : ccaweights }
    # Added for idf normalization
    if params['normalization']=='idf' or params['normalization']=='combined':
        idf = load_idf()
        kwparams['idf']=idf
        kwparams['words']=ixtoword
    else:
        kwparams['idf']=None
        kwparams['words']=None
    # Added for LDA
    if not params['lda'] == 0:
      Ys = BatchGenerator.predict_test([{'image':img}], model, checkpoint_params, **kwparams)
    else:
      Ys = BatchGenerator.predict_test([{'image':img}], model, checkpoint_params, **kwparams)

    img_blob = {} # we will build this up
    img_blob['img_path'] = img['local_file_path']
    img_blob['imgid'] = img['imgid']

    if dump_folder:
      # copy source file to some folder. This makes it easier to distribute results
      # into a webpage, because all images that were predicted on are in a single folder
      source_file = img['local_file_path']
      target_file = os.path.join(dump_folder, os.path.basename(img['local_file_path']))
      os.system('cp %s %s' % (source_file, target_file))

    # encode the human-provided references
    img_blob['references'] = []
    for gtsent in references:
      print 'GT: ' + gtsent
      img_blob['references'].append({'text': gtsent})

    # now evaluate and encode the top prediction
    top_predictions = Ys[0] # take predictions for the first (and only) image we passed in
    top_prediction = top_predictions[0] # these are sorted with highest on top
    candidate = ' '.join([ixtoword[ix] for ix in top_prediction[1] if ix > 0]) # ix 0 is the END token, skip that
    print 'PRED: (%f) %s' % (top_prediction[0], candidate)

    # save for later eval
    all_references.append(references)
    all_candidates.append(candidate)

    img_blob['candidate'] = {'text': candidate, 'logprob': top_prediction[0]}
    blob['imgblobs'].append(img_blob)

  # use perl script to eval BLEU score for fair comparison to other research work
  # first write intermediate files
  print 'writing intermediate files into eval/'
  open('eval/output', 'w').write('\n'.join(all_candidates))
  for q in xrange(5):
    open('eval/reference'+`q`, 'w').write('\n'.join([x[q] for x in all_references]))
  # invoke the perl script to get BLEU scores
  print 'invoking eval/multi-bleu.perl script...'
  owd = os.getcwd()
  os.chdir('eval')
  os.system('./multi-bleu.perl reference < output')
  os.chdir(owd)

  # now also evaluate test split perplexity
  gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
  print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
  blob['gtppl'] = gtppl

  # dump result struct to file
  print 'saving result struct to %s' % (params['result_struct_filename'], )
  json.dump(blob, open(params['result_struct_filename'], 'w'))
Exemplo n.º 11
0
def main(params):

    # load the checkpoint
    checkpoint_path = params['checkpoint_path']
    max_images = params['max_images']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dataset = checkpoint_params['dataset']
    model_npy = checkpoint['model']
    dump_folder = params['dump_folder']

    if 'use_theano' not in checkpoint_params:
        checkpoint_params['use_theano'] = 1
    checkpoint_params['use_theano'] = 1

    if 'image_feat_size' not in checkpoint_params:
        checkpoint_params['image_feat_size'] = 4096

    if dump_folder:
        print 'creating dump folder ' + dump_folder
        os.system('mkdir -p ' + dump_folder)

    # fetch the data provider
    dp = getDataProvider(checkpoint_params)

    misc = {}
    misc['wordtoix'] = checkpoint['wordtoix']
    ixtoword = checkpoint['ixtoword']

    blob = {
    }  # output blob which we will dump to JSON for visualizing the results
    blob['params'] = params
    blob['checkpoint_params'] = checkpoint_params
    blob['imgblobs'] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)

    if checkpoint_params['use_theano'] == 1:
        # Compile and init the theano predictor
        BatchGenerator.prepPredictor(model_npy, checkpoint_params,
                                     params['beam_size'])
        model = BatchGenerator.model_th
        print("\nUsing model run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint['epoch'], \
          checkpoint['perplexity']))

    n = 0
    all_references = []
    all_candidates = []
    for img in dp.iterImages(split='test', max_images=max_images):
        n += 1
        print 'image %d/%d:' % (n, max_images)
        references = [' '.join(x['tokens'])
                      for x in img['sentences']]  # as list of lists of tokens
        kwparams = {'beam_size': params['beam_size']}

        img['feat'] = np.random.rand(*img['feat'].shape)

        Ys = BatchGenerator.predict([{
            'image': img
        }], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob['img_path'] = img['local_file_path']
        img_blob['imgid'] = img['imgid']

        if dump_folder:
            # copy source file to some folder. This makes it easier to distribute results
            # into a webpage, because all images that were predicted on are in a single folder
            source_file = img['local_file_path']
            target_file = os.path.join(
                dump_folder, os.path.basename(img['local_file_path']))
            os.system('cp %s %s' % (source_file, target_file))

        # encode the human-provided references
        img_blob['references'] = []
        for gtsent in references:
            print 'GT: ' + gtsent
            img_blob['references'].append({'text': gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[
            0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[
            0]  # these are sorted with highest on top
        #import pdb; pdb.set_trace()
        candidate = ' '.join([
            ixtoword[ix] for ix in top_prediction[1] if ix > 0
        ])  # ix 0 is the END token, skip that
        print 'PRED: (%f) %s' % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)

        img_blob['candidate'] = {
            'text': candidate,
            'logprob': float(top_prediction[0])
        }

        # Code to save all the other candidates
        candlist = []
        for ci in xrange(len(top_predictions) - 1):
            prediction = top_predictions[
                ci + 1]  # these are sorted with highest on top
            candidate = ' '.join([
                ixtoword[int(ix)] for ix in prediction[1] if ix > 0
            ])  # ix 0 is the END token, skip that
            candlist.append({
                'text': candidate,
                'logprob': float(prediction[0])
            })

        img_blob['candidatelist'] = candlist

        blob['imgblobs'].append(img_blob)

    # use perl script to eval BLEU score for fair comparison to other research work
    # first write intermediate files
    print 'writing intermediate files into eval/'
    open('eval/output', 'w').write('\n'.join(all_candidates))
    for q in xrange(5):
        open('eval/reference' + ` q `,
             'w').write('\n'.join([x[q] for x in all_references]))
    # invoke the perl script to get BLEU scores
    print 'invoking eval/multi-bleu.perl script...'
    owd = os.getcwd()
    os.chdir('eval')
    os.system('./multi-bleu.perl reference < output')
    os.chdir(owd)

    # now also evaluate test split perplexity

    #  if checkpoint_params['use_theano'] == 0:
    #    gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
    #  else:
    #    gtppl = eval_split_theano('test', dp, model, checkpoint_params, misc, BatchGenerator.f_eval, eval_max_images = max_images) # perform the evaluation on VAL set
    #  print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
    #  blob['gtppl'] = gtppl
    #
    # dump result struct to file
    print 'saving result struct to %s' % (params['result_struct_filename'], )
    json.dump(blob, open(params['result_struct_filename'], 'w'))
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model_npy = checkpoint['model']
  dump_folder = params['dump_folder']

  if 'use_theano' not in  checkpoint_params:
    checkpoint_params['use_theano'] = 1
  checkpoint_params['use_theano'] = 1

  if 'image_feat_size' not in  checkpoint_params:
    checkpoint_params['image_feat_size'] = 4096 

  if dump_folder:
    print 'creating dump folder ' + dump_folder
    os.system('mkdir -p ' + dump_folder)
    
  # fetch the data provider
  dp = getDataProvider(checkpoint_params)

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  ixtoword = checkpoint['ixtoword']

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)

  if checkpoint_params['use_theano'] == 1:
  	# Compile and init the theano predictor 
    BatchGenerator.prepPredictor(model_npy, checkpoint_params,params['beam_size'])
    model = BatchGenerator.model_th
    print("\nUsing model run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint['epoch'], \
      checkpoint['perplexity']))

  n = 0
  all_references = []
  all_candidates = []
  for img in dp.iterImages(split = 'test', max_images = max_images):
    n += 1
    print 'image %d/%d:' % (n, max_images)
    references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    kwparams = {'beam_size' : params['beam_size']}
    
    #img['feat'] = np.random.rand(*img['feat'].shape)

    Ys = BatchGenerator.predict([{'image':img}], model, checkpoint_params, **kwparams)
    
    img_blob = {} # we will build this up
    img_blob['img_path'] = img['local_file_path']
    img_blob['imgid'] = img['imgid']

    if dump_folder:
      # copy source file to some folder. This makes it easier to distribute results
      # into a webpage, because all images that were predicted on are in a single folder
      source_file = img['local_file_path']
      target_file = os.path.join(dump_folder, os.path.basename(img['local_file_path']))
      os.system('cp %s %s' % (source_file, target_file))

    # encode the human-provided references
    img_blob['references'] = []
    for gtsent in references:
      print 'GT: ' + gtsent
      img_blob['references'].append({'text': gtsent})

    # now evaluate and encode the top prediction
    top_predictions = Ys[0] # take predictions for the first (and only) image we passed in
    top_prediction = top_predictions[0] # these are sorted with highest on top
    #import pdb; pdb.set_trace()
    candidate = ' '.join([ixtoword[ix] for ix in top_prediction[1] if ix > 0]) # ix 0 is the END token, skip that
    print 'PRED: (%f) %s' % (top_prediction[0], candidate)

    # save for later eval
    all_references.append(references)
    all_candidates.append(candidate)

    img_blob['candidate'] = {'text': candidate, 'logprob': float(top_prediction[0])}    

    # Code to save all the other candidates 
    candlist = []
    for ci in xrange(len(top_predictions)-1):
        prediction = top_predictions[ci+1] # these are sorted with highest on top
        candidate = ' '.join([ixtoword[int(ix)] for ix in prediction[1] if ix > 0]) # ix 0 is the END token, skip that
        candlist.append({'text': candidate, 'logprob': float(prediction[0])})
    
    img_blob['candidatelist'] = candlist

    blob['imgblobs'].append(img_blob)

  # use perl script to eval BLEU score for fair comparison to other research work
  # first write intermediate files
  print 'writing intermediate files into eval/'
  open('eval/output', 'w').write('\n'.join(all_candidates))
  for q in xrange(5):
    open('eval/reference'+`q`, 'w').write('\n'.join([x[q] for x in all_references]))
  # invoke the perl script to get BLEU scores
  print 'invoking eval/multi-bleu.perl script...'
  owd = os.getcwd()
  os.chdir('eval')
  os.system('./multi-bleu.perl reference < output')
  os.chdir(owd)

  # now also evaluate test split perplexity
  
#  if checkpoint_params['use_theano'] == 0:
#    gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
#  else:
#    gtppl = eval_split_theano('test', dp, model, checkpoint_params, misc, BatchGenerator.f_eval, eval_max_images = max_images) # perform the evaluation on VAL set
#  print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
#  blob['gtppl'] = gtppl
#
  # dump result struct to file
  print 'saving result struct to %s' % (params['result_struct_filename'], )
  json.dump(blob, open(params['result_struct_filename'], 'w'))
def main(params):

    # load the checkpoint
    checkpoint_path = params["checkpoint_path"]
    max_images = params["max_images"]

    print "loading checkpoint %s" % (checkpoint_path,)
    checkpoint = pickle.load(open(checkpoint_path, "rb"))
    checkpoint_params = checkpoint["params"]
    dataset = checkpoint_params["dataset"]
    model_npy = checkpoint["model"]
    dump_folder = params["dump_folder"]

    if "use_theano" not in checkpoint_params:
        checkpoint_params["use_theano"] = 1
    checkpoint_params["use_theano"] = 1

    if "image_feat_size" not in checkpoint_params:
        checkpoint_params["image_feat_size"] = 4096

    if dump_folder:
        print "creating dump folder " + dump_folder
        os.system("mkdir -p " + dump_folder)

    # fetch the data provider
    dp = getDataProvider(checkpoint_params)

    misc = {}
    misc["wordtoix"] = checkpoint["wordtoix"]
    ixtoword = checkpoint["ixtoword"]

    blob = {}  # output blob which we will dump to JSON for visualizing the results
    blob["params"] = params
    blob["checkpoint_params"] = checkpoint_params
    blob["imgblobs"] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)

    if checkpoint_params["use_theano"] == 1:
        # Compile and init the theano predictor
        BatchGenerator.prepPredictor(model_npy, checkpoint_params, params["beam_size"])
        model = BatchGenerator.model_th
        print (
            "\nUsing model run for %0.2f epochs with validation perplx at %0.3f\n"
            % (checkpoint["epoch"], checkpoint["perplexity"])
        )

    n = 0
    all_references = []
    all_candidates = []
    for img in dp.iterImages(split="test", max_images=max_images):
        n += 1
        print "image %d/%d:" % (n, max_images)
        references = [" ".join(x["tokens"]) for x in img["sentences"]]  # as list of lists of tokens
        kwparams = {"beam_size": params["beam_size"]}

        img["feat"] = np.random.rand(*img["feat"].shape)

        Ys = BatchGenerator.predict([{"image": img}], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob["img_path"] = img["local_file_path"]
        img_blob["imgid"] = img["imgid"]

        if dump_folder:
            # copy source file to some folder. This makes it easier to distribute results
            # into a webpage, because all images that were predicted on are in a single folder
            source_file = img["local_file_path"]
            target_file = os.path.join(dump_folder, os.path.basename(img["local_file_path"]))
            os.system("cp %s %s" % (source_file, target_file))

        # encode the human-provided references
        img_blob["references"] = []
        for gtsent in references:
            print "GT: " + gtsent
            img_blob["references"].append({"text": gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[0]  # these are sorted with highest on top
        # import pdb; pdb.set_trace()
        candidate = " ".join([ixtoword[ix] for ix in top_prediction[1] if ix > 0])  # ix 0 is the END token, skip that
        print "PRED: (%f) %s" % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)

        img_blob["candidate"] = {"text": candidate, "logprob": float(top_prediction[0])}

        # Code to save all the other candidates
        candlist = []
        for ci in xrange(len(top_predictions) - 1):
            prediction = top_predictions[ci + 1]  # these are sorted with highest on top
            candidate = " ".join(
                [ixtoword[int(ix)] for ix in prediction[1] if ix > 0]
            )  # ix 0 is the END token, skip that
            candlist.append({"text": candidate, "logprob": float(prediction[0])})

        img_blob["candidatelist"] = candlist

        blob["imgblobs"].append(img_blob)

    # use perl script to eval BLEU score for fair comparison to other research work
    # first write intermediate files
    print "writing intermediate files into eval/"
    open("eval/output", "w").write("\n".join(all_candidates))
    for q in xrange(5):
        open("eval/reference" + ` q `, "w").write("\n".join([x[q] for x in all_references]))
    # invoke the perl script to get BLEU scores
    print "invoking eval/multi-bleu.perl script..."
    owd = os.getcwd()
    os.chdir("eval")
    os.system("./multi-bleu.perl reference < output")
    os.chdir(owd)

    # now also evaluate test split perplexity

    #  if checkpoint_params['use_theano'] == 0:
    #    gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
    #  else:
    #    gtppl = eval_split_theano('test', dp, model, checkpoint_params, misc, BatchGenerator.f_eval, eval_max_images = max_images) # perform the evaluation on VAL set
    #  print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
    #  blob['gtppl'] = gtppl
    #
    # dump result struct to file
    print "saving result struct to %s" % (params["result_struct_filename"],)
    json.dump(blob, open(params["result_struct_filename"], "w"))
Exemplo n.º 14
0
def gen_from_test(params):
    # load the checkpoint
    checkpoint_path = params['checkpoint_path']
    max_images = params['max_images']
    fout = params['output_file']
    tempo = params['tempo']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dataset = checkpoint_params['dataset']
    model = checkpoint['model']
    dump_folder = params['dump_folder']

    if dump_folder:
        print 'creating dump folder ' + dump_folder
        os.system('mkdir -p ' + dump_folder)

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}
    misc['wordtoix'] = checkpoint['wordtoix']
    ixtoword = checkpoint['ixtoword']

    blob = {
    }  # output blob which we will dump to JSON for visualizing the results
    blob['params'] = params
    blob['checkpoint_params'] = checkpoint_params
    blob['imgblobs'] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)
    n = 0
    all_references = []
    all_candidates = []
    candidates = []
    for img in dp.iterImages(split='test', max_images=max_images):
        n += 1
        print 'image %d/%d:' % (n, max_images)
        references = [' '.join(x['tokens'])
                      for x in img['sentences']]  # as list of lists of tokens
        kwparams = {'beam_size': params['beam_size']}

        Ys = BatchGenerator.predict([{
            'image': img
        }], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob['img_path'] = img['local_file_path']
        img_blob['imgid'] = img['imgid']

        if dump_folder:
            # copy source file to some folder. This makes it easier to distribute results
            # into a webpage, because all images that were predicted on are in a single folder
            source_file = img['local_file_path']
            target_file = os.path.join(
                dump_folder, os.path.basename(img['local_file_path']))
            os.system('cp %s %s' % (source_file, target_file))

        # encode the human-provided references
        img_blob['references'] = []
        for gtsent in references:
            print 'GT: ' + gtsent
            img_blob['references'].append({'text': gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[
            0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[
            0]  # these are sorted with highest on top
        candidate = ' '.join([
            ixtoword[ix] for ix in top_prediction[1] if ix > 0
        ])  # ix 0 is the END token, skip that
        candidates.append(candidate)
        print 'PRED: (%f) %s' % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)

        img_blob['candidate'] = {
            'text': candidate,
            'logprob': top_prediction[0]
        }
        blob['imgblobs'].append(img_blob)

    # use perl script to eval BLEU score for fair comparison to other research work
    # first write intermediate files
    print 'writing intermediate files into eval/'
    open('eval/output', 'w').write('\n'.join(all_candidates))
    for q in xrange(1):
        open('eval/reference' + ` q `,
             'w').write('\n'.join([x[q] for x in all_references]))
    # invoke the perl script to get BLEU scores
    print 'invoking eval/multi-bleu.perl script...'
    owd = os.getcwd()
    os.chdir('eval')
    os.system('./multi-bleu.perl reference < output')
    os.chdir(owd)

    # now also evaluate test split perplexity
    gtppl = eval_split('test',
                       dp,
                       model,
                       checkpoint_params,
                       misc,
                       eval_max_images=max_images)
    print 'perplexity of ground truth words based on dictionary of %d words: %f' % (
        len(ixtoword), gtppl)
    blob['gtppl'] = gtppl

    # dump result struct to file
    #  print 'saving result struct to %s' % (params['result_struct_filename'], )
    #  json.dump(blob, open(params['result_struct_filename'], 'w'))

    for idx, c in enumerate(candidates):
        cs = c.split()
        for e in cs:
            es = e.split(';')
            pitch = int(es[0])
            pos = es[1]
            pos = convert_pos(pos, idx)
            dur = es[2]
            dur = convert_dur(dur)
            note = pretty_midi.Note(90, pitch, pos, pos + dur)
            new_track.notes.append(note)

    new_midi_data = pretty_midi.PrettyMIDI(initial_tempo=tempo)
    new_midi_data.instruments.append(new_track)

    # pre-set chord preogression
    bass_track.notes.append(pretty_midi.Note(90, 36, 0, 1))
    bass_track.notes.append(pretty_midi.Note(90, 47, 1, 2))
    bass_track.notes.append(pretty_midi.Note(90, 45, 2, 3))
    bass_track.notes.append(pretty_midi.Note(90, 43, 3, 4))
    bass_track.notes.append(pretty_midi.Note(90, 41, 4, 5))
    bass_track.notes.append(pretty_midi.Note(90, 40, 5, 6))
    bass_track.notes.append(pretty_midi.Note(90, 38, 6, 7))
    bass_track.notes.append(pretty_midi.Note(90, 43, 7, 8))

    bass_track.notes.append(pretty_midi.Note(90, 36, 8, 9))
    bass_track.notes.append(pretty_midi.Note(90, 47, 9, 10))
    bass_track.notes.append(pretty_midi.Note(90, 45, 10, 11))
    bass_track.notes.append(pretty_midi.Note(90, 43, 11, 12))
    bass_track.notes.append(pretty_midi.Note(90, 41, 12, 13))
    bass_track.notes.append(pretty_midi.Note(90, 40, 13, 14))
    bass_track.notes.append(pretty_midi.Note(90, 38, 14, 15))
    bass_track.notes.append(pretty_midi.Note(90, 43, 15, 16))

    bass_track.notes.append(pretty_midi.Note(90, 45, 16, 17))
    bass_track.notes.append(pretty_midi.Note(90, 41, 17, 18))
    bass_track.notes.append(pretty_midi.Note(90, 36, 18, 19))
    bass_track.notes.append(pretty_midi.Note(90, 43, 19, 20))
    bass_track.notes.append(pretty_midi.Note(90, 45, 20, 21))
    bass_track.notes.append(pretty_midi.Note(90, 41, 21, 22))
    bass_track.notes.append(pretty_midi.Note(90, 43, 22, 23))
    bass_track.notes.append(pretty_midi.Note(90, 43, 23, 24))

    bass_track.notes.append(pretty_midi.Note(90, 36, 24, 25))
    bass_track.notes.append(pretty_midi.Note(90, 47, 25, 26))
    bass_track.notes.append(pretty_midi.Note(90, 45, 26, 27))
    bass_track.notes.append(pretty_midi.Note(90, 43, 27, 28))
    bass_track.notes.append(pretty_midi.Note(90, 41, 28, 29))
    bass_track.notes.append(pretty_midi.Note(90, 40, 29, 30))
    bass_track.notes.append(pretty_midi.Note(90, 38, 30, 31))
    bass_track.notes.append(pretty_midi.Note(90, 43, 31, 32))

    bass_track.notes.append(pretty_midi.Note(90, 36, 32, 33))
    bass_track.notes.append(pretty_midi.Note(90, 47, 33, 34))
    bass_track.notes.append(pretty_midi.Note(90, 45, 34, 35))
    bass_track.notes.append(pretty_midi.Note(90, 43, 35, 36))
    bass_track.notes.append(pretty_midi.Note(90, 41, 36, 37))
    bass_track.notes.append(pretty_midi.Note(90, 40, 37, 38))
    bass_track.notes.append(pretty_midi.Note(90, 38, 38, 39))
    bass_track.notes.append(pretty_midi.Note(90, 43, 39, 40))

    new_midi_data.instruments.append(bass_track)
    adjust_tempo(new_midi_data)
    if params['quantize']:
        quantize(new_midi_data)
    new_midi_data.write(fout)
Exemplo n.º 15
0
def main(params, split):

    #import pdb; pdb.set_trace()

    batch_size = params['batch_size']
    dataset = params['dataset']
    feature_file = params['feature_file']
    class_count_threshold = params['class_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    json_file = 'dataset_mmdb_book_fps_30_samplesize_25_split_%d.json' % (
        split)

    # fetch the data provider
    dp = getDataProvider(dataset, feature_file, json_file)

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training classes and find the vocabulary we want to use, i.e. the classes that occur
    # at least class_count_threshold number of times
    misc['classtoix'], misc[
        'ixtoclass'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), class_count_threshold)

    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    if params.get('init_model_from', ''):
        # load checkpoint
        checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
        model = checkpoint['model']  # overwrite the model

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoclass'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoclass'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    lastsavedcheckpoint = ''
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
                 train_ppl2, smooth_train_ppl2)

        print 'last saved checkpoint in %s' % (lastsavedcheckpoint, )
        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        if it == 10 and do_grad_check:
            print 'disabling dropout for gradient check...'
            params['drop_prob_encoder'] = 0
            params['drop_prob_decoder'] = 0
            solver.gradCheck(batch, model, costfun)
            print 'done gradcheck, exitting.'
            sys.exit()  # hmmm. probably should exit here

        # detect if loss is exploding and kill the job if so
        total_cost = cost['total_cost']
        if it == 0:
            total_cost0 = total_cost  # store this initial cost
        if total_cost > total_cost0 * 2:
            print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
            abort = True  # set the abort flag, we'll break out

        # logging: write JSON files for visual inspection of the training
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['smooth_train_ppl2'] = smooth_train_ppl2
            jstatus['val_ppl2'] = val_ppl2  # just write the last available one
            jstatus['train_ppl2'] = train_ppl2
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            val_ppl2 = eval_split('val', dp, model, params,
                                  misc)  # perform the evaluation on VAL set
            print 'validation perplexity = %f' % (val_ppl2, )

            # abort training if the perplexity is no good
            min_ppl_or_abort = params['min_ppl_or_abort']
            if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
                print 'aborting job because validation perplexity %f < %f' % (
                    val_ppl2, min_ppl_or_abort)
                abort = True  # abort the job

            write_checkpoint_ppl_threshold = params[
                'write_checkpoint_ppl_threshold']
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2

                    filename = 'model_checkpoint_%s_%s_%s_alpha_%2.2f_beta_%2.2f_split_%d.p' % (
                        dataset, host, params['fappend'], params['alpha'],
                        params['beta'], split)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_ppl2
                    checkpoint['classtoix'] = misc['classtoix']
                    checkpoint['ixtoclass'] = misc['ixtoclass']
                    checkpoint['json_file'] = json_file

                    try:
                        if not (params['fappend'] == 'test'):
                            # if it == max_iters - 1 :
                            pickle.dump(checkpoint, open(filepath, "wb"))
                            print 'saved checkpoint in %s' % (filepath, )
                            lastsavedcheckpoint = filepath
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model = checkpoint['model']
  dump_folder = params['dump_folder']

  if dump_folder:
    print 'creating dump folder ' + dump_folder
    os.system('mkdir -p ' + dump_folder)
    
  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  ixtoword = checkpoint['ixtoword']

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)
  n = 0
  all_references = []
  all_candidates = []
  captions_res = []
  for img in dp.iterImages(split = 'test', max_images = max_images):
    n+=1
    print 'image %d/%d:' % (n, max_images)
    references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    kwparams = { 'beam_size' : params['beam_size'] }
    Ys = BatchGenerator.predict([{'image':img}], model, checkpoint_params, **kwparams)

    img_blob = {} # we will build this up
    img_blob['img_path'] = img['local_file_path']
    img_blob['imgid'] = img['imgid']
    img_blob['id'] = img['id']

    if dump_folder:
      # copy source file to some folder. This makes it easier to distribute results
      # into a webpage, because all images that were predicted on are in a single folder
      source_file = img['local_file_path']
      target_file = os.path.join(dump_folder, os.path.basename(img['local_file_path']))
      os.system('cp %s %s' % (source_file, target_file))

    # encode the human-provided references
    img_blob['references'] = []
    flag = True
    for gtsent in references:
      if flag:
        print 'GT: ' + gtsent
        flag = False
      img_blob['references'].append({'text': gtsent})

    # now evaluate and encode the top prediction
    top_predictions = Ys[0] # take predictions for the first (and only) image we passed in
    top_prediction = top_predictions[0] # these are sorted with highest on top
    candidate = ' '.join([ixtoword[ix] for ix in top_prediction[1] if ix > 0]) # ix 0 is the END token, skip that
    print 'PRED: (%f) %s' % (top_prediction[0], candidate)

    # save for later eval
    all_references.append(references)
    all_candidates.append(candidate)
    captions_res.append({'image_id':img_blob['id'],'caption':candidate})
    img_blob['candidate'] = {'text': candidate, 'logprob': top_prediction[0]}    
    blob['imgblobs'].append(img_blob)

  # use perl script to eval BLEU score for fair comparison to other research work
  # first write intermediate files
  print 'writing intermediate files into eval/'
  open('eval/output', 'w').write('\n'.join(all_candidates))
  for q in xrange(5):
    open('eval/reference'+`q`, 'w').write('\n'.join([x[q] for x in all_references]))
  # invoke the perl script to get BLEU scores
  print 'invoking eval/multi-bleu.perl script...'
  owd = os.getcwd()
  os.chdir('eval')
  os.system('./multi-bleu.perl reference < output')
  os.chdir(owd)

  # # now also evaluate test split perplexity
  # gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
  # print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
  # blob['gtppl'] = gtppl

  # dump result struct to file
  print 'saving result struct to %s' % (params['result_struct_filename'], )
  json.dump(blob, open(params['result_struct_filename'], 'w'))

  alg_name = params['checkpoint_path'].split('_')[1]
  res_file_name = params['out_dir']+'/captions_val_'+alg_name+'_results.json'
  json.dump(captions_res, open(res_file_name, 'w'))

  from eval_tools import metrics
  metrics.run(dataset,alg_name,params['out_dir'])
def main(params):
    batch_size = params['batch_size']
    dataset = params['dataset']  # name of the dataset flickr8k, flickr30k..
    word_count_threshold = params['word_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(dataset)
    completeData = dp.getData('train')

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    #print 'dp.iterSentences', dp.iterSentences('train')
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)
    #printWordEmbedding(dp.iterSentences('train'),misc['wordtoix'])

    #print 'type;',type(completeData)
    # calculate weights of all unique words in vocab
    weightComputedData = calculateWeights(misc['wordtoix'], misc['ixtoword'],
                                          completeData)

    weightCalculationMethodSec()
    weightComputedData = getWeightsMethod2()
    print 'Done:'

    # delegate the initialization of the model to the Generator class
    BatchGenerator = GenericBatchGenerator()
    #decodeGenerator(params)

    # initialize encoder and decoder weight matrices
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = bias_init_vector.reshape(
        1, bias_init_vector.size)  # remove and check

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    if params.get('init_model_from', ''):
        # load checkpoint
        checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
        model = checkpoint['model']  # overwrite the model

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc, weightComputedData)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        #train_ppl2 = step_struct['stats']['ppl2']
        #if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out

        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'])

        total_cost = cost['total_cost']
        if it == 0:
            total_cost0 = total_cost
        if total_cost > total_cost0 * 2:
            print 'Aborting, cost seems to be exploding. '
            abort = True

        if (it + 1) == max_iters:
            top_val_ppl2 = val_ppl2
            filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (
                dataset, host, params['fappend'], val_ppl2)
            filepath = os.path.join(params['checkpoint_output_directory'],
                                    filename)
            checkpoint = {}
            checkpoint['it'] = it
            checkpoint['epoch'] = epoch
            checkpoint['model'] = model
            checkpoint['params'] = params
            checkpoint['perplexity'] = val_ppl2
            checkpoint['wordtoix'] = misc['wordtoix']
            checkpoint['ixtoword'] = misc['ixtoword']
            try:
                pickle.dump(checkpoint, open(filepath, "wb"))
                print 'saved checkpoint in %s' % (filepath, )
            except Exception, e:
                print 'tried to write checkpoint into %s but got error: ' % (
                    filepath, )
                print e
Exemplo n.º 18
0
import numpy as np
import cPickle as pickle
import json
from operator import itemgetter

checkpoint = pickle.load(open('trainedModels/model_checkpoint_coco_gpu001_c_in14_o9_fc7_d_a_Auxo9_fc8_11.96.p','r'))
wix = checkpoint['wordtoix']
dataset = json.load(open('/triton/ics/project/imagedb/picsom/databases/COCO/download/annotations/instances_train2014.json','r'))
ixw = checkpoint['ixtoword']

from collections import defaultdict
from imagernn.data_provider import getDataProvider, prepare_data
params = {}
params['dataset'] = 'coco'
params['data_file'] = 'dataset.json'
dp = getDataProvider(params)


catIdImgs = defaultdict(set)
for ann in dataset['annotations']:
    catIdImgs[ann['category_id']].add(ann['image_id'])

catIdtoIx = {}
for i,cat in enumerate(catIdImgs.keys()):
    catIdtoIx[cat] = i

nTrnSamp = len(dataset['images'])
wordsIdList = defaultdict(set)

for img in dp.split['train']:
    for sent in img['sentences']:
Exemplo n.º 19
0
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model = checkpoint['model']

  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  ixtoword = checkpoint['ixtoword']

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)
  all_bleu_scores = []
  n = 0
  #for img in dp.iterImages(split = 'test', shuffle = True, max_images = max_images):
  for img in dp.iterImages(split = 'test', max_images = max_images):
    n+=1
    print 'image %d/%d:' % (n, max_images)
    references = [x['tokens'] for x in img['sentences']] # as list of lists of tokens
    kwparams = { 'tanhC_version' : checkpoint_params.get('tanhC_version', 0) ,\
                 'beam_size' : params['beam_size'],\
                 'generator' : checkpoint_params['generator']}
    Ys = BatchGenerator.predict([{'image':img}], model, **kwparams)

    img_blob = {} # we will build this up
    img_blob['img_path'] = img['local_file_path']
    img_blob['imgid'] = img['imgid']

    # encode the human-provided references
    img_blob['references'] = []
    for gtwords in references:
      print 'GT: ' + ' '.join(gtwords)
      img_blob['references'].append({'text': ' '.join(gtwords)})

    # now evaluate and encode the top prediction
    top_predictions = Ys[0] # take predictions for the first (and only) image we passed in
    top_prediction = top_predictions[0] # these are sorted with highest on top
    candidate = [ixtoword[ix] for ix in top_prediction[1]]
    print 'PRED: (%f) %s' % (top_prediction[0], ' '.join(candidate))
    bleu_scores = evalCandidate(candidate, references)
    print 'BLEU: B-1: %f B-2: %f B-3: %f' % tuple(bleu_scores)
    img_blob['candidate'] = {'text': ' '.join(candidate), 'logprob': top_prediction[0], 'bleu': bleu_scores}

    all_bleu_scores.append(bleu_scores)
    blob['imgblobs'].append(img_blob)

  print 'final average bleu scores:'
  bleu_averages = [sum(x[i] for x in all_bleu_scores)*1.0/len(all_bleu_scores) for i in xrange(3)]
  blob['final_result'] = { 'bleu' : bleu_averages }
  print 'FINAL BLEU: B-1: %f B-2: %f B-3: %f' % tuple(bleu_averages)
  
  # now also evaluate test split perplexity
  gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
  print 'perplexity of ground truth words: %f' % (gtppl, )
  blob['gtppl'] = gtppl

  # dump result struct to file
  print 'saving result struct to %s' % (params['result_struct_filename'], )
  json.dump(blob, open(params['result_struct_filename'], 'w'))
Exemplo n.º 20
0
def main(params):
  batch_size = params['batch_size']
  dataset = params['dataset']
  word_count_threshold = params['word_count_threshold']
  do_grad_check = params['do_grad_check']
  max_epochs = params['max_epochs']


  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)

  # delegate the initialization of the model to the Generator class
  BatchGenerator = decodeGenerator(params)
  init_struct = BatchGenerator.init(params, misc)
  model, misc['update'], misc['regularize'] = (init_struct['model'], init_struct['update'], init_struct['regularize'])

  # force overwrite here. This is a bit of a hack, not happy about it
  model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
  print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

  if params.get('init_model_from', ''):
    # load checkpoint
    checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
    model = checkpoint['model'] # overwrite the model

  # initialize the Solver and the cost function
  solver = Solver()
  def costfun(batch, model):
    # wrap the cost function to abstract some things away from the Solver
    return RNNGenCost(batch, model, params, misc)

  # calculate how many iterations we need
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  abort = False
  top_val_ppl2 = -1
  smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  import csv
  csvfile = open(os.path.join(params['outdir'],params['generator']+'.csv'),'wb')
  csvout = csv.writer(csvfile,delimiter=',',quotechar='"')

  csv_val_file = open(os.path.join(params['outdir'],params['generator']+'_val.csv'),'wb')
  csv_val_out = csv.writer(csv_val_file,delimiter=',',quotechar='"')

  for it in xrange(max_iters):
    if abort: break
    t0 = time.time()
    # fetch a batch of data
    batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
    # evaluate cost, gradient and perform parameter update
    step_struct = solver.step(batch, model, costfun, **params)
    cost = step_struct['cost']
    dt = time.time() - t0

    # print training statistics
    train_ppl2 = step_struct['stats']['ppl2']
    smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
    if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
    epoch = it * 1.0 / num_iters_one_epoch
    print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
          % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
             train_ppl2, smooth_train_ppl2)

    csvout.writerow([it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'],train_ppl2, smooth_train_ppl2])
    csvfile.flush()

    if not host=='oliver-Aurora-R4':
      sys.stdout.flush()

    # os.system('./update_plots.sh')

    # perform gradient check if desired, with a bit of a burnin time (10 iterations)
    if it == 10 and do_grad_check:
      print 'disabling dropout for gradient check...'
      params['drop_prob_encoder'] = 0
      params['drop_prob_decoder'] = 0
      solver.gradCheck(batch, model, costfun)
      print 'done gradcheck, exitting.'
      sys.exit() # hmmm. probably should exit here

    # detect if loss is exploding and kill the job if so
    total_cost = cost['total_cost']
    if it == 0:
      total_cost0 = total_cost # store this initial cost
    if total_cost > total_cost0 * 2:
      print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
      abort = True # set the abort flag, we'll break out

    # logging: write JSON files for visual inspection of the training
    tnow = time.time()
    if tnow > last_status_write_time + 60*1: # every now and then lets write a report
      last_status_write_time = tnow
      jstatus = {}
      jstatus['time'] = datetime.datetime.now().isoformat()
      jstatus['iter'] = (it, max_iters)
      jstatus['epoch'] = (epoch, max_epochs)
      jstatus['time_per_batch'] = dt
      jstatus['smooth_train_ppl2'] = smooth_train_ppl2
      jstatus['val_ppl2'] = val_ppl2 # just write the last available one
      jstatus['train_ppl2'] = train_ppl2
      json_worker_status['history'].append(jstatus)
      status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
      try:
        json.dump(json_worker_status, open(status_file, 'w'))
      except Exception, e: # todo be more clever here
        print 'tried to write worker status into %s but got error:' % (status_file, )
        print e

    # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
      print 'validation perplexity = %f' % (val_ppl2, )

      cp_pred = {}
      cp_pred['it'] = it
      cp_pred['epoch'] = epoch
      cp_pred['model'] = model
      cp_pred['params'] = params
      cp_pred['perplexity'] = val_ppl2
      cp_pred['wordtoix'] = misc['wordtoix']
      cp_pred['ixtoword'] = misc['ixtoword']
      cp_pred['algorithm'] = params['generator']
      cp_pred['outdir'] = params['outdir']

      if is_last_iter:
        scores = eval_sentence_predictions.run(cp_pred)
        csv_val_out.writerow([it, max_iters, dt, epoch, val_ppl2, scores[0],scores[1],scores[2],scores[3],scores[4],scores[5],scores[6]])
        csv_val_file.flush()
	omail.send('job finished'+params['generator'],'done')


      # abort training if the perplexity is no good
      min_ppl_or_abort = params['min_ppl_or_abort']
      if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
        print 'aborting job because validation perplexity %f < %f' % (val_ppl2, min_ppl_or_abort)
        abort = True # abort the job

      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if  val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          top_val_ppl2 = val_ppl2
          filename = 'model_%s_checkpoint_%s_%s_%s_%.2f.p' % (params['generator'],dataset, host, params['fappend'], val_ppl2)
          filepath = os.path.join(params['outdir'], filename)
          checkpoint = {}
          checkpoint['it'] = it
          checkpoint['epoch'] = epoch
          checkpoint['model'] = model
          checkpoint['params'] = params
          checkpoint['perplexity'] = val_ppl2
          checkpoint['wordtoix'] = misc['wordtoix']
          checkpoint['ixtoword'] = misc['ixtoword']

          checkpoint['algorithm'] = params['generator']
          checkpoint['outdir'] = params['outdir']

          try:
            pickle.dump(checkpoint, open(filepath, "wb"))
            print 'saved checkpoint in %s' % (filepath, )
          except Exception, e: # todo be more clever here
            print 'tried to write checkpoint into %s but got error: ' % (filepat, )
            print e

          scores = eval_sentence_predictions.run(checkpoint)
          csv_val_out.writerow([it, max_iters, dt, epoch, val_ppl2, scores[0],scores[1],scores[2],scores[3],scores[4],scores[5],scores[6]])
          csv_val_file.flush()
Exemplo n.º 21
0
def main(params, splitno, model_file):
    checkpoint_path = model_file
    max_blocks = params['max_blocks']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dataset = checkpoint_params['dataset']
    feature_file = checkpoint_params['feature_file']
    json_file = checkpoint['json_file']
    model = checkpoint['model']

    # fetch the data provider
    dp = getDataProvider(dataset, feature_file, json_file)

    misc = {}
    misc['classtoix'] = checkpoint['classtoix']
    ixtoword = checkpoint['ixtoclass']

    blob = {
    }  # output blob which we will dump to JSON for visualizing the results
    blob['params'] = params
    blob['checkpoint_params'] = checkpoint_params
    blob['imgblobs'] = []

    # iterate over all videos in test set and predict class labels
    BatchGenerator = decodeGenerator(checkpoint_params)
    n = 0
    correct = 0
    prev_video_name = ''
    video_block_count = 0
    pred_video_label = []
    pred_video_lbl = 0
    prev_gt_video_label = 0
    label_check = False
    video_count = 0
    stat = []
    v_data = {}
    result = {}

    for img in dp.iterImagesContext(split='test', max_images=max_blocks):
        n += 1
        print 'clip %d/%d:' % (n, max_blocks)
        gt_video_label = img['sentences'][0]['tokens'][0]
        current_video_name = img['filename']

        Ys = BatchGenerator.predict([{'image': img}], model, checkpoint_params)
        pred_frame_labels = np.argmax(Ys[0], axis=1)
        current_pred_video_label = max_occurrences(pred_frame_labels)[0]

        # impl based on action recog using visual attn paper - http://arxiv.org/abs/1511.04119
        if current_video_name == prev_video_name or n == 1:
            pred_video_label.append(current_pred_video_label)
            video_block_count += 1
            prev_gt_video_label = gt_video_label
            prev_video_name = current_video_name
            label_check = False
        else:
            pred_video_lbl = max_occurrences(pred_video_label)[0]
            if pred_video_lbl == prev_gt_video_label:
                correct = correct + 1

            v_data['video_name'] = prev_video_name
            v_data['gt_label'] = prev_gt_video_label
            v_data['pred_label'] = int(pred_video_lbl)

            stat.append(v_data)
            v_data = {}

            pred_video_label = []
            video_block_count = 0
            label_check = True
            video_count += 1

            # process current video block
            pred_video_label.append(current_pred_video_label)
            prev_video_name = current_video_name
            video_block_count += 1
            prev_gt_video_label = gt_video_label

    if label_check == False:  # last block of videos
        video_count += 1
        pred_video_lbl = max_occurrences(pred_video_label)[0]
        if pred_video_lbl == prev_gt_video_label:
            correct = correct + 1

        v_data['video_name'] = prev_video_name
        v_data['gt_label'] = prev_gt_video_label
        v_data['pred_label'] = int(pred_video_lbl)

        stat.append(v_data)

    json.dump(stat, open("./status/mmdb_stat_split_%d.json" % (splitno), 'a'))
    accuracy = correct / float(video_count)

    result['split'] = splitno
    result['accuracy'] = accuracy
    json.dump(
        result,
        open("./status/mmdb_split_result_split_%d.json" % (splitno), 'a'))

    return accuracy
Exemplo n.º 22
0
def hold_comittee_discussion(params, com_dataset):

    n_memb = com_dataset['n_memb']
    n_sent = com_dataset['n_sent']
    n_imgs = len(com_dataset['images'])

    eval_array = np.zeros((n_memb, n_imgs * n_sent))
    model_id = 0
    for mod in com_dataset['members_model']:
        checkpoint = pickle.load(open(mod, 'rb'))
        checkpoint_params = checkpoint['params']
        dataset = checkpoint_params['dataset']
        model_npy = checkpoint['model']

        checkpoint_params['use_theano'] = 1

        if 'image_feat_size' not in checkpoint_params:
            checkpoint_params['image_feat_size'] = 4096

        checkpoint_params['data_file'] = params['jsonFname'].rsplit('/')[-1]
        dp = getDataProvider(checkpoint_params)

        ixtoword = checkpoint['ixtoword']

        blob = {
        }  # output blob which we will dump to JSON for visualizing the results
        blob['params'] = params
        blob['checkpoint_params'] = checkpoint_params
        blob['imgblobs'] = []

        # iterate over all images in test set and predict sentences
        BatchGenerator = decodeGenerator(checkpoint_params)

        BatchGenerator.build_eval_other_sent(BatchGenerator.model_th,
                                             checkpoint_params, model_npy)

        eval_batch_size = params.get('eval_batch_size', 100)
        eval_max_images = params.get('eval_max_images', -1)
        wordtoix = checkpoint['wordtoix']

        split = 'test'
        print 'evaluating %s performance in batches of %d' % (split,
                                                              eval_batch_size)
        logppl = 0
        logppln = 0
        nsent = 0
        gen_fprop = BatchGenerator.f_eval_other
        blob['params'] = params
        c_id = 0
        for batch in dp.iterImageSentencePairBatch(
                split=split,
                max_batch_size=eval_batch_size,
                max_images=eval_max_images):
            xWd, xId, maskd, lenS = dp.prepare_data(batch, wordtoix)
            eval_array[model_id,
                       c_id:c_id + xWd.shape[1]] = gen_fprop(xWd, xId, maskd)
            c_id += xWd.shape[1]

        model_id += 1

    # Calculate oracle scores
    bleu_array = eval_bleu_all_cand(params, com_dataset)
    eval_results = {}
    eval_results['logProb_feat'] = eval_array
    eval_results['OracleBleu'] = bleu_array
    #Save the mutual evaluations

    params['comResFname'] = 'committee_evalSc_%s.json' % (params['fappend'])
    com_dataset['com_evaluation'] = params['comResFname']
    pickle.dump(eval_results, open(params['comResFname'], "wb"))
    json.dump(com_dataset, open(params['jsonFname'], 'w'))

    return eval_array
def hold_comittee_discussion(params, com_dataset):
    
    n_memb = com_dataset['n_memb']
    n_sent = com_dataset['n_sent']
    n_imgs = len(com_dataset['images'])

    eval_array = np.zeros((n_memb,n_imgs*n_sent))
    model_id = 0  
    for mod in com_dataset['members_model']:
        checkpoint = pickle.load(open(mod, 'rb'))
        checkpoint_params = checkpoint['params']
        dataset = checkpoint_params['dataset']
        model_npy = checkpoint['model']

        checkpoint_params['use_theano'] = 1

        if 'image_feat_size' not in  checkpoint_params:
          checkpoint_params['image_feat_size'] = 4096 

        checkpoint_params['data_file'] = params['jsonFname'].rsplit('/')[-1]
        dp = getDataProvider(checkpoint_params)

        ixtoword = checkpoint['ixtoword']

        blob = {} # output blob which we will dump to JSON for visualizing the results
        blob['params'] = params
        blob['checkpoint_params'] = checkpoint_params
        blob['imgblobs'] = []

        # iterate over all images in test set and predict sentences
        BatchGenerator = decodeGenerator(checkpoint_params)

        BatchGenerator.build_eval_other_sent(BatchGenerator.model_th, checkpoint_params,model_npy)

        eval_batch_size = params.get('eval_batch_size',100)
        eval_max_images = params.get('eval_max_images', -1)
        wordtoix = checkpoint['wordtoix']

        split = 'test'
        print 'evaluating %s performance in batches of %d' % (split, eval_batch_size)
        logppl = 0
        logppln = 0
        nsent = 0
        gen_fprop = BatchGenerator.f_eval_other
        blob['params'] = params
        c_id = 0
        for batch in dp.iterImageSentencePairBatch(split = split, max_batch_size = eval_batch_size, max_images = eval_max_images):
          xWd, xId, maskd, lenS = dp.prepare_data(batch,wordtoix)
          eval_array[model_id, c_id:c_id + xWd.shape[1]] = gen_fprop(xWd, xId, maskd)
          c_id += xWd.shape[1]
        
        model_id +=1
    
    # Calculate oracle scores
    bleu_array = eval_bleu_all_cand(params,com_dataset)
    eval_results = {}
    eval_results['logProb_feat'] = eval_array
    eval_results['OracleBleu'] = bleu_array
    #Save the mutual evaluations

    params['comResFname'] = 'committee_evalSc_%s.json' % (params['fappend'])
    com_dataset['com_evaluation'] = params['comResFname']
    pickle.dump(eval_results, open(params['comResFname'], "wb"))
    json.dump(com_dataset,open(params['jsonFname'], 'w'))

    return eval_array
Exemplo n.º 24
0
def main(params):

    # load the checkpoint
    checkpoint_path = params['checkpoint_path']
    max_images = params['max_images']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dataset = checkpoint_params['dataset']
    model = checkpoint['model']

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}
    misc['wordtoix'] = checkpoint['wordtoix']
    ixtoword = checkpoint['ixtoword']

    blob = {
    }  # output blob which we will dump to JSON for visualizing the results
    blob['params'] = params
    blob['checkpoint_params'] = checkpoint_params
    blob['imgblobs'] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)
    n = 0
    all_references = []
    all_candidates = []
    for img in dp.iterImages(split='test', max_images=max_images):
        n += 1
        print 'image %d/%d:' % (n, max_images)
        references = [' '.join(x['tokens'])
                      for x in img['sentences']]  # as list of lists of tokens
        kwparams = {'beam_size': params['beam_size']}
        Ys = BatchGenerator.predict([{
            'image': img
        }], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob['img_path'] = img['local_file_path']
        img_blob['imgid'] = img['imgid']

        # encode the human-provided references
        img_blob['references'] = []
        for gtsent in references:
            print 'GT: ' + gtsent
            img_blob['references'].append({'text': gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[
            0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[
            0]  # these are sorted with highest on top
        candidate = ' '.join([
            ixtoword[ix] for ix in top_prediction[1] if ix > 0
        ])  # ix 0 is the END token, skip that
        print 'PRED: (%f) %s' % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)

        img_blob['candidate'] = {
            'text': candidate,
            'logprob': top_prediction[0]
        }
        blob['imgblobs'].append(img_blob)

    # use perl script to eval BLEU score for fair comparison to other research work
    # first write intermediate files
    print 'writing intermediate files into eval/'
    open('eval/output', 'w').write('\n'.join(all_candidates))
    for q in xrange(5):
        open('eval/reference' + ` q `,
             'w').write('\n'.join([x[q] for x in all_references]))
    # invoke the perl script to get BLEU scores
    print 'invoking eval/multi-bleu.perl script...'
    owd = os.getcwd()
    os.chdir('eval')
    os.system('./multi-bleu.perl reference < output')
    os.chdir(owd)

    # now also evaluate test split perplexity
    gtppl = eval_split('test',
                       dp,
                       model,
                       checkpoint_params,
                       misc,
                       eval_max_images=max_images)
    print 'perplexity of ground truth words based on dictionary of %d words: %f' % (
        len(ixtoword), gtppl)
    blob['gtppl'] = gtppl

    # dump result struct to file
    print 'saving result struct to %s' % (params['result_struct_filename'], )
    json.dump(blob, open(params['result_struct_filename'], 'w'))
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']
  gt_dataset = params['gt_dataset']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model = checkpoint['model']
  dump_folder = params['dump_folder']
   
  rootpath = '/home/lgp105b/xirong/VisualSearch'
  collection = 'flickr8k'
  version = 'baidu'
  fout = open(os.path.join(rootpath,collection,'SimilarityIndex','test_sent','%s.top20.sentid.txt'%dataset),'w')
  fout_s = open(os.path.join(rootpath,collection,'SimilarityIndex','test_sent','%s.top20.sentid.score.txt'%dataset),'w')

  if dump_folder:
    print 'creating dump folder ' + dump_folder
    os.system('mkdir -p ' + dump_folder)

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  print "len(misc['wordtoix']):",len(misc['wordtoix'])
  ixtoword = checkpoint['ixtoword']
 
  #get the groundtruth sentences encoded in model-dataset's chvob
  vob2idx = chinese_vob_idx(rootpath,collection,version)
  testset_filename = os.path.join(rootpath,collection,'Annotation','test_dataset.txt')
  test_ids = [x.strip() for x in open(testset_filename).readlines()]
  gt_filename = os.path.join(rootpath,collection,'seg.Flickr8k.token.Chinese.txt')
 
  testid2sentences = {}
  input_data = map(str.strip, open(gt_filename).readlines())
  input_data = [x.decode('utf-8', 'ignore') for x in input_data]
  input_data = [x for x in input_data if x.split()[0][:-2] in test_ids]
  print len(input_data)
  
  #ignore if a word not in chvob or not in wodtoix(words occur more tham threshold)
  testid2sentences = encode_to_chvob(vob2idx, input_data)
  count_del = 0
  for sid in testid2sentences.keys():
      testid2sentences[sid] = [misc['wordtoix'][x] for x in testid2sentences[sid] if x in misc['wordtoix'].keys()]
      if len(testid2sentences[sid]) < 2:
          del testid2sentences[sid]
          count_del+=1
  print '%d sentences cannot encoded with misx[wordtoix]'%count_del
 
  '''
  sentences = {}
  for img in dp.iterImages(split = 'test', max_images = max_images):
    filename = img['filename']
    for sent in img['sentences']:
      sentid = sent['sentid']
      sentences['%s#%s'%(filename,sentid)] = [misc['wordtoix'][x] if x in misc['wordtoix'].keys() else 0 for x in sent['tokens']]
      
    #references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    #sentences[filename] = [[int(x) if int(x) <= len(misc['wordtoix']) else 0 for x in sentence.split()] for sentence in references]
  '''

   
  # fetch the data provider
  dp = getDataProvider(dataset)

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)
  n = 0
  all_references = []
  all_candidates = []
  for img in dp.iterImages(split = 'test', max_images = max_images):
    n+=1
    filename = img['filename']
    print 'image %d/%d:%s' % (n, max_images,filename)
    
    #references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    #sentences = [[int(x) if x <= len(misc['wordtoix']) else 0 for x in sentence.split()] for sentence in references]
    #print sentences
    kwparams = { 'beam_size' : params['beam_size'] }
    top_sentences = BatchGenerator.sentence_relevance([{'image':img}], model, checkpoint_params, testid2sentences, **kwparams)
    fout.write('%s '%filename)
    output_line = '%s '%filename
    for x in top_sentences:
        for elem in x:
            fout.write('%s '%elem[0])
            output_line += '%s %s '%(elem[0],elem[1])
    output_line += '\n'
    print output_line
    fout.write('\n')
    fout_s.write(output_line)
    fout_s.flush()
  fout.close()
  fout_s.close()
Exemplo n.º 26
0
def main(scriptparams):
    checkpoint = pickle.load(open(scriptparams['checkpoint'], 'rb'))
    npfilename = osp.join(
        'scorelogs',
        osp.basename(scriptparams['checkpoint']).split('.')[0] + '_logprob%s' %
        (scriptparams['split']))
    misc = checkpoint['misc']

    # fetch the data provider
    params = checkpoint['params']
    params['use_gumbel_mse'] = 0
    params['maxlen'] = scriptparams['maxlen']

    dp = getDataProvider(params)
    model_init_gen_from = checkpoint.get(
        'model', {}) if 'model' in checkpoint else checkpoint['modelGen']

    lstmGenerator = decodeGenerator(params)
    model, misc['update'], misc['regularize'] = (lstmGenerator.model_th,
                                                 lstmGenerator.update_list,
                                                 lstmGenerator.regularize)

    if params.get('use_encoder_for', 0) & 1:
        if params.get('encode_gt_sentences', 0):
            xI = tensor.zeros((batch_size, params['image_encoding_size']))
            imgFeatEnc_inp = []
        else:
            imgFeatEncoder = RecurrentFeatEncoder(params['image_feat_size'],
                                                  params['word_encoding_size'],
                                                  params,
                                                  mdl_prefix='img_enc_',
                                                  features=dp.features.T)
            mdlLen = len(model.keys())
            model.update(imgFeatEncoder.model_th)
            assert (len(model.keys()) == (mdlLen +
                                          len(imgFeatEncoder.model_th.keys())))
            misc['update'].extend(imgFeatEncoder.update_list)
            misc['regularize'].extend(imgFeatEncoder.regularize)
            (imgenc_use_dropout, imgFeatEnc_inp, xI,
             updatesLSTMImgFeat) = imgFeatEncoder.build_model(model, params)
    else:
        xI = None
        imgFeatEnc_inp = []

    if params.get('use_encoder_for', 0) & 2:
        aux_enc_inp = model['Wemb'] if params.get('encode_gt_sentences',
                                                  0) else dp.aux_inputs.T
        hid_size = params['featenc_hidden_size']
        auxFeatEncoder = RecurrentFeatEncoder(hid_size,
                                              params['image_encoding_size'],
                                              params,
                                              mdl_prefix='aux_enc_',
                                              features=aux_enc_inp)
        mdlLen = len(model.keys())
        model.update(auxFeatEncoder.model_th)
        assert (len(model.keys()) == (mdlLen +
                                      len(auxFeatEncoder.model_th.keys())))
        misc['update'].extend(auxFeatEncoder.update_list)
        misc['regularize'].extend(auxFeatEncoder.regularize)
        (auxenc_use_dropout, auxFeatEnc_inp, xAux,
         updatesLSTMAuxFeat) = auxFeatEncoder.build_model(model, params)

        if params.get('encode_gt_sentences', 0):
            # Reshape it size(batch_size, n_gt, hidden_size)
            xAux = xAux.reshape(
                (-1, params['n_encgt_sent'], params['featenc_hidden_size']))
            # Convert it to size (batch_size, n_gt*hidden_size
            xAux = xAux.flatten(2)
    else:
        auxFeatEnc_inp = []
        xAux = None

    attn_nw_func = None

    (use_dropout, inp_list_gen, f_pred_prob, cost, predTh,
     updatesLSTM) = lstmGenerator.build_model(model,
                                              params,
                                              xI,
                                              xAux,
                                              attn_nw=attn_nw_func)
    inp_list = imgFeatEnc_inp + auxFeatEnc_inp + inp_list_gen

    f_eval = theano.function(inp_list, cost, name='f_eval')
    #--------------------------------- Cost function and gradient computations setup #---------------------------------#

    zipp(model_init_gen_from, model)
    # perform the evaluation on VAL set
    #val_sc = eval_split_theano(scriptparams['split'], dp, model, params, misc, f_eval)
    logppl = []
    logppln = []
    imgids = []
    nsent = 0

    for batch in dp.iterImageSentencePairBatch(split=scriptparams['split'],
                                               max_batch_size=1,
                                               max_images=-1):
        enc_inp_list = prepare_seq_features(
            batch,
            use_enc_for=params.get('use_encoder_for', 0),
            maxlen=params['maxlen'],
            use_shared_mem=params.get('use_shared_mem_enc', 0),
            enc_gt_sent=params.get('encode_gt_sentences', 0),
            n_enc_sent=params.get('n_encgt_sent', 0),
            wordtoix=misc['wordtoix'])
        gen_inp_list, lenS = prepare_data(
            batch,
            misc['wordtoix'],
            rev_sents=params.get('reverse_sentence', 0),
            use_enc_for=params.get('use_encoder_for', 0),
            use_unk_token=params.get('use_unk_token', 0))

        inp_list = enc_inp_list + gen_inp_list
        cost = f_eval(*inp_list)
        logppl.append(cost[1])
        logppln.append(lenS)
        imgids.append(
            str(batch[0]['image']['cocoid']) + '_' + str(batch[0]['sentidx']))
        nsent += 1

    perplex = 2**(np.array(logppl) / np.array(logppln))
    np.savez(npfilename, pplx=perplex, keys=np.array(imgids))

    #ppl2 = 2 ** (logppl / logppln)
    #print 'evaluated %d sentences and got perplexity = %f' % (nsent, ppl2)
    #met = [ppl2]

    print 2**(np.array(logppl).sum() / np.array(logppln).sum())
Exemplo n.º 27
0
def main(params):
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(params)
    # Initialize the optimizer
    solver = Solver(params['solver'])

    params['image_feat_size'] = dp.img_feat_size
    params['aux_inp_size'] = dp.aux_inp_size

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)

    if params['fine_tune'] == 1:
        params['mode'] = 'multi_choice_mode' if params[
            'mc_mode'] == 1 else 'multimodal_lstm'
        if params['checkpoint_file_name'] != None:
            #params['batch_size'] = dp.dataset['batchsize']
            misc['wordtoix'] = checkpoint_init['wordtoix']
            misc['ixtoword'] = checkpoint_init['ixtoword']
        batch_size = 1
        num_sentences_total = dp.getSplitSize('train', ofwhat='images')
    else:
        params['mode'] = 'batchtrain'
        batch_size = params['batch_size']
        num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')

    params['vocabulary_size'] = len(misc['wordtoix'])
    pos_samp = np.arange(batch_size, dtype=np.int32)

    # This initializes the model parameters and does matrix initializations
    evalModel = decodeEvaluator(params)
    model, misc['update'], misc['regularize'] = (evalModel.model_th,
                                                 evalModel.updateP,
                                                 evalModel.regularize)

    #----------------- If we are using feature encoders -----------------------
    if params['use_encoder_for'] & 1:
        imgFeatEncoder = RecurrentFeatEncoder(params['image_feat_size'],
                                              params['sent_encoding_size'],
                                              params,
                                              mdl_prefix='img_enc_',
                                              features=dp.features.T)
        mdlLen = len(model.keys())
        model.update(imgFeatEncoder.model_th)
        assert (len(model.keys()) == (mdlLen +
                                      len(imgFeatEncoder.model_th.keys())))
        #misc['update'].extend(imgFeatEncoder.update_list)
        misc['regularize'].extend(imgFeatEncoder.regularize)
        (imgenc_use_dropout, imgFeatEnc_inp, xI,
         updatesLSTMImgFeat) = imgFeatEncoder.build_model(model, params)
    else:
        xI = None
        imgFeatEnc_inp = []

    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list_eval, miscOuts, cost, predTh,
     model) = evalModel.build_model(model,
                                    params,
                                    xI=xI,
                                    prior_inp_list=imgFeatEnc_inp)

    inp_list = imgFeatEnc_inp + inp_list_eval

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name='f_eval')

    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params['regc'] > 0.:
        reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
        reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']),
                                          name='reg_c')
        for p in misc['regularize']:
            reg_cost += (model[p]**2).sum()
            reg_cost *= 0.5 * reg_c
        cost[0] += (reg_cost / params['batch_size'])

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(cost[0], wrt=model.values())
    lr = tensor.scalar(name='lr', dtype=config.floatX)
    if params['sim_minibatch'] > 0:
        f_grad_accum, f_clr, ag = solver.accumGrads(model, grads, inp_list,
                                                    cost,
                                                    params['sim_minibatch'])
        f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
            lr, model, ag, inp_list, cost, params)
    else:
        f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
            lr, model, grads, inp_list, cost, params)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    inner_loop = params['sim_minibatch'] if params['sim_minibatch'] > 0 else 1
    max_iters = max_iters / inner_loop
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs / inner_loop))
    top_val_ppl2 = -1
    smooth_train_cost = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    smooth_error_rate = 100.
    error_rate = 0.
    prev_it = -1
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []

    len_hist = defaultdict(int)

    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != None:
        zipp(model_init_from, model)
        zipp(rg_init, rg)
        print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
          checkpoint_init['perplexity']))
    elif params['init_from_imagernn'] != None:
        # Initialize word vecs and image emb from generative model file
        rnnCv = pickle.load(open(params['init_from_imagernn'], 'rb'))
        model['Wemb'].set_value(rnnCv['model']['Wemb'])
        model['WIemb'].set_value(rnnCv['model']['WIemb_aux'])
        misc['wordtoix'] = rnnCv['wordtoix']
        misc['ixtoword'] = rnnCv['ixtoword']
        print(
            "\n Initialized Word embedding and Image embeddings from gen mode %s"
            % (params['init_from_imagernn']))

    write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']

    use_dropout.set_value(1.)
    #################### Main Loop ############################################
    for it in xrange(max_iters):
        t0 = time.time()

        if params['use_encoder_for'] & 1:
            imgenc_use_dropout.set_value(float(params['use_dropout']))

        # fetch a batch of data
        cost_inner = np.zeros((inner_loop, ), dtype=np.float32)
        if params['sim_minibatch'] > 0:
            for i_l in xrange(inner_loop):
                batch, pos_samp_sent = dp.sampPosNegSentSamps(
                    params['batch_size'], params['mode'], thresh=0.3)
                eval_inp_list, lenS = prepare_data(
                    batch,
                    misc['wordtoix'],
                    maxlen=params['maxlen'],
                    pos_samp=pos_samp,
                    prep_for=params['eval_model'],
                    use_enc_for=params['use_encoder_for'])
                if params['fine_tune'] == 1:
                    eval_inp_list.append(pos_samp_sent)
                cost_inner[i_l] = f_grad_accum(*eval_inp_list)
        else:
            batch, pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],
                                                          params['mode'],
                                                          thresh=0.3)
            enc_inp_list = prepare_seq_features(
                batch,
                use_enc_for=params['use_encoder_for'],
                use_shared_mem=params['use_shared_mem_enc'])
            eval_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                maxlen=params['maxlen'],
                pos_samp=pos_samp,
                prep_for=params['eval_model'],
                use_enc_for=params['use_encoder_for'])
            if params['fine_tune'] == 1:
                eval_inp_list.append(pos_samp_sent)

        real_inp_list = enc_inp_list + eval_inp_list

        # Enable using dropout in training
        cost = f_grad_shared(*real_inp_list)
        f_update(params['learning_rate'])
        dt = time.time() - t0

        # Reset accumulated gradients to 0
        if params['sim_minibatch'] > 0:
            f_clr()
        #print 'model: ' + ' '.join([str(np.isnan(model[m].get_value()).any()) for m in model])
        #print 'rg: ' +' '.join([str(np.isnan(rg[i].get_value()).any()) for i in xrange(len(rg))])
        #print 'zg: ' + ' '.join([str(np.isnan(zg[i].get_value()).any()) for i in xrange(len(zg))])
        #print 'ud: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])
        #import pdb; pdb.set_trace()
        #print 'udAft: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])

        # print training statistics
        epoch = it * inner_loop * 1.0 / num_iters_one_epoch
        total_cost = (np.e**(-cost[0]) + (np.e**(-cost_inner)).sum() *
                      (params['sim_minibatch'] > 0)) / (
                          1 + params['sim_minibatch'])
        #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_cost)
        if it == 0: smooth_train_cost = total_cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * total_cost
        error_rate += 100.0 * float((cost[2] < 0.).sum()) / batch_size

        margin_strength = cost[2].sum()
        smooth_error_rate = 0.99 * smooth_error_rate + 0.01 * 100.0 * (
            float(cost[1]) / batch_size) if it > 0 else 100.0 * (
                float(cost[1]) / batch_size)

        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print '%d/%d batch done in %.3fs. at epoch %.2f. Prob now is %.4f, Error '\
                    'rate is %.3f%%, Margin %.2f, negMarg=%.2f' % (it, max_iters, dt, \
                    epoch, smooth_train_cost, smooth_error_rate,
                    margin_strength, error_rate/(it-prev_it))
            error_rate = 0.
            prev_it = it
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['val_ppl2'] = val_ppl2  # just write the last available one
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            #import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.)
            if params['use_encoder_for'] & 1:
                imgenc_use_dropout.set_value(0.)

            val_ppl2 = eval_split_theano(
                'val', dp, model, params, misc,
                f_eval)  # perform the evaluation on VAL set
            if epoch - params['lr_decay_st_epoch'] >= 0:
                params['learning_rate'] = params['learning_rate'] * params[
                    'lr_decay']
                params['lr_decay_st_epoch'] += 1

            print 'validation perplexity = %f, lr = %f' % (
                val_ppl2, params['learning_rate'])
            #if params['sample_by_len'] == 1:
            #  print len_hist

            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = '%s_checkpoint_%s_%s_%s_%.2f_%.2f.p' % (
                        params['eval_model'], params['dataset'], host,
                        params['fappend'], smooth_error_rate, val_ppl2)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model_npy
                    checkpoint['rgrads'] = rgrads_npy
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_ppl2
                    checkpoint['wordtoix'] = misc['wordtoix']
                    checkpoint['ixtoword'] = misc['ixtoword']
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print 'saved checkpoint in %s' % (filepath, )
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e

            use_dropout.set_value(1.)
Exemplo n.º 28
0
def main(params):
    batch_size = params["batch_size"]
    dataset = params["dataset"]
    word_count_threshold = params["word_count_threshold"]
    do_grad_check = params["do_grad_check"]
    max_epochs = params["max_epochs"]
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc["wordtoix"], misc["ixtoword"], bias_init_vector = preProBuildWordVocab(
        dp.iterSentences("train"), word_count_threshold
    )

    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc["update"], misc["regularize"] = (init_struct["model"], init_struct["update"], init_struct["regularize"])

    # force overwrite here. This is a bit of a hack, not happy about it
    model["bd"] = bias_init_vector.reshape(1, bias_init_vector.size)

    print "model init done."
    print "model has keys: " + ", ".join(model.keys())
    print "updating: " + ", ".join("%s [%dx%d]" % (k, model[k].shape[0], model[k].shape[1]) for k in misc["update"])
    print "updating: " + ", ".join("%s [%dx%d]" % (k, model[k].shape[0], model[k].shape[1]) for k in misc["regularize"])
    print "number of learnable parameters total: %d" % (
        sum(model[k].shape[0] * model[k].shape[1] for k in misc["update"]),
    )

    if params.get("init_model_from", ""):
        # load checkpoint
        checkpoint = pickle.load(open(params["init_model_from"], "rb"))
        model = checkpoint["model"]  # overwrite the model
        print checkpoint["model"]

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize("train", ofwhat="sentences")
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params["eval_period"]
    eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(misc["ixtoword"])  # initially size of dictionary of confusion
    val_ppl2 = len(misc["ixtoword"])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status["params"] = params
    json_worker_status["history"] = []
    for it in xrange(max_iters):
        if abort:
            break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct["cost"]
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct["stats"]["ppl2"]
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print "%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)" % (
            it,
            max_iters,
            dt,
            epoch,
            cost["loss_cost"],
            cost["reg_cost"],
            train_ppl2,
            smooth_train_ppl2,
        )

        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        if it == 10 and do_grad_check:
            print "disabling dropout for gradient check..."
            params["drop_prob_encoder"] = 0
            params["drop_prob_decoder"] = 0
            solver.gradCheck(batch, model, costfun)
            print "done gradcheck, exitting."
            sys.exit()  # hmmm. probably should exit here

        # detect if loss is exploding and kill the job if so
        total_cost = cost["total_cost"]
        if it == 0:
            total_cost0 = total_cost  # store this initial cost
        if total_cost > total_cost0 * 2:
            print "Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?"
            abort = True  # set the abort flag, we'll break out

        # logging: write JSON files for visual inspection of the training
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            last_status_write_time = tnow
            jstatus = {}
            jstatus["time"] = datetime.datetime.now().isoformat()
            jstatus["iter"] = (it, max_iters)
            jstatus["epoch"] = (epoch, max_epochs)
            jstatus["time_per_batch"] = dt
            jstatus["smooth_train_ppl2"] = smooth_train_ppl2
            jstatus["val_ppl2"] = val_ppl2  # just write the last available one
            jstatus["train_ppl2"] = train_ppl2
            json_worker_status["history"].append(jstatus)
            status_file = os.path.join(params["worker_status_output_directory"], host + "_status.json")
            try:
                json.dump(json_worker_status, open(status_file, "w"))
            except Exception, e:  # todo be more clever here
                print "tried to write worker status into %s but got error:" % (status_file,)
                print e

        # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
            val_ppl2 = eval_split("val", dp, model, params, misc)  # perform the evaluation on VAL set
            print "validation perplexity = %f" % (val_ppl2,)

            # abort training if the perplexity is no good
            min_ppl_or_abort = params["min_ppl_or_abort"]
            if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
                print "aborting job because validation perplexity %f < %f" % (val_ppl2, min_ppl_or_abort)
                abort = True  # abort the job

            write_checkpoint_ppl_threshold = params["write_checkpoint_ppl_threshold"]
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = "model_checkpoint_%s_%s_%s_%.2f.p" % (dataset, host, params["fappend"], val_ppl2)
                    filepath = os.path.join(params["checkpoint_output_directory"], filename)
                    checkpoint = {}
                    checkpoint["it"] = it
                    checkpoint["epoch"] = epoch
                    checkpoint["model"] = model
                    checkpoint["params"] = params
                    checkpoint["perplexity"] = val_ppl2
                    checkpoint["wordtoix"] = misc["wordtoix"]
                    checkpoint["ixtoword"] = misc["ixtoword"]
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print "saved checkpoint in %s" % (filepath,)
                    except Exception, e:  # todo be more clever here
                        print "tried to write checkpoint into %s but got error: " % (filepat,)
                        print e
Exemplo n.º 29
0
def main(params):
    for resF in params['resFileList']:
        caps = json.load(open(resF, 'r'))
        dp = getDataProvider(caps['checkpoint_params'])
        trackMetargs = {'eval_metric': params['met_to_track']}
        refToks, scr_info = eval_prep_refs(params['split'], dp,
                                           params['met_to_track'])
        trackMetargs['refToks'] = refToks
        trackMetargs['scr_info'] = scr_info
        capsById = {}
        n_cands = params['keepN'] - 1 if params['keepN'] != None else None
        npfilename = osp.join(
            'scorelogs',
            osp.basename(resF).split('.')[0] + '_all%s_pairwise_%d' %
            (params['met_to_track'][0], n_cands + 1))
        n = 0
        for img in caps['imgblobs']:
            imgid = int(img['img_path'].split('_')[-1].split('.')[0])
            capsById[imgid] = [{
                'image_id': imgid,
                'caption': img['candidate']['text'],
                'id': n
            }]
            n += 1
            capsById[imgid].extend([{
                'image_id': imgid,
                'caption': cd['text'],
                'id': n + j
            } for j, cd in enumerate(img['candidatelist'][:n_cands])])
            if len(capsById[imgid]) < (n_cands + 1):
                capsById[imgid].extend([
                    capsById[imgid][-1]
                    for _ in xrange(n_cands + 1 - len(capsById[imgid]))
                ])
            n += len(capsById[imgid]) - 1

        n_caps_perimg = len(capsById[capsById.keys()[0]])
        n_refs_perimg = len(refToks[refToks.keys()[0]])
        capsById = trackMetargs['scr_info']['tokenizer'].tokenize(capsById)

        all_scrs = []
        eval_metric = trackMetargs.get('eval_metric', 'perplex')
        #met = [[] for i in xrange(len(eval_metric)) if eval_metric[i][:6] != 'lcldiv']
        if params['rev_eval'] == 1:
            tempCont = capsById
            capsById = refToks
            refToks = tempCont
            temp_cnt = n_caps_perimg
            n_caps_perimg = n_refs_perimg
            n_refs_perimg = temp_cnt
            npfilename += '_reverse'

        met = np.zeros(
            (len(eval_metric), n_caps_perimg, n_refs_perimg, len(capsById)))

        for j in xrange(n_caps_perimg):
            candToks = {imgid: [capsById[imgid][j]] for imgid in capsById}
            for r in xrange(n_refs_perimg):
                refTokInp = {
                    imgid: refToks[imgid][r:r + 1]
                    for imgid in capsById
                }
                # Now invoke all the scorers and get the scores
                for i, evm in enumerate(eval_metric):
                    score, scores = trackMetargs['scr_info']['scr_fn'][
                        i].compute_score(refTokInp, candToks)
                    met[i, j,
                        r, :] = scores[-1] if type(score) == list else scores

                #print 'evaluated %d sentences and got %s = %f' % (n, evm, met[-1])
        np.savez(npfilename + '.npz', met=met, keys=refTokInp.keys())

        # Compute some specific scores
        mean_max_scr = met[0, :, :, :].max(axis=1).mean()

        if met.shape[1] <= met.shape[2] and met.shape[1] > 1 and params[
                'keepN'] <= 10:
            perms = np.array(
                [c for c in permutations(xrange(met.shape[2]), met.shape[1])])
            #Compute non-overlapping max-mean

            new_idx = np.concatenate([
                perms[:, None, :],
                np.tile(np.arange(met.shape[1])[None, :],
                        [perms.shape[0], 1])[:, None, :]
            ],
                                     axis=1)

            non_overlapping_scrs = met[0, new_idx[:, 0, :],
                                       new_idx[:, 1, :], :].sum(axis=1).max(
                                           axis=0).mean() / float(met.shape[1])
        else:
            non_overlapping_scrs = 0.

        print 'mean %s is %.3f, mean-max is %.3f, non-overlapping mean-max is %.3f' % (
            eval_metric[0], met.mean(), mean_max_scr, non_overlapping_scrs)
def main(params):

  # load the checkpoint
  checkpoint_path = params['checkpoint_path']
  max_images = params['max_images']

  print 'loading checkpoint %s' % (checkpoint_path, )
  checkpoint = pickle.load(open(checkpoint_path, 'rb'))
  checkpoint_params = checkpoint['params']
  dataset = checkpoint_params['dataset']
  model = checkpoint['model']

  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {}
  misc['wordtoix'] = checkpoint['wordtoix']
  ixtoword = checkpoint['ixtoword']

  blob = {} # output blob which we will dump to JSON for visualizing the results
  blob['params'] = params
  blob['checkpoint_params'] = checkpoint_params
  blob['imgblobs'] = []

  # iterate over all images in test set and predict sentences
  BatchGenerator = decodeGenerator(checkpoint_params)
  n = 0
  all_references = []
  all_candidates = []
  for img in dp.iterImages(split = 'test', max_images = max_images):
    n+=1
    print 'image %d/%d:' % (n, max_images)
    references = [' '.join(x['tokens']) for x in img['sentences']] # as list of lists of tokens
    kwparams = { 'beam_size' : params['beam_size'] }
    Ys = BatchGenerator.predict([{'image':img}], model, checkpoint_params, **kwparams)

    img_blob = {} # we will build this up
    img_blob['img_path'] = img['local_file_path']
    img_blob['imgid'] = img['imgid']

    # encode the human-provided references
    img_blob['references'] = []
    for gtsent in references:
      print 'GT: ' + gtsent
      img_blob['references'].append({'text': gtsent})

    # now evaluate and encode the top prediction
    top_predictions = Ys[0] # take predictions for the first (and only) image we passed in
    top_prediction = top_predictions[0] # these are sorted with highest on top
    candidate = ' '.join([ixtoword[ix] for ix in top_prediction[1] if ix > 0]) # ix 0 is the END token, skip that
    print 'PRED: (%f) %s' % (top_prediction[0], candidate)

    # save for later eval
    all_references.append(references)
    all_candidates.append(candidate)

    img_blob['candidate'] = {'text': candidate, 'logprob': top_prediction[0]}    
    blob['imgblobs'].append(img_blob)

  # use perl script to eval BLEU score for fair comparison to other research work
  # first write intermediate files
  print 'writing intermediate files into eval/'
  open('eval/output', 'w').write('\n'.join(all_candidates))
  for q in xrange(5):
    open('eval/reference'+`q`, 'w').write('\n'.join([x[q] for x in all_references]))
  # invoke the perl script to get BLEU scores
  print 'invoking eval/multi-bleu.perl script...'
  owd = os.getcwd()
  os.chdir('eval')
  os.system('./multi-bleu.perl reference < output')
  os.chdir(owd)

  # now also evaluate test split perplexity
  gtppl = eval_split('test', dp, model, checkpoint_params, misc, eval_max_images = max_images)
  print 'perplexity of ground truth words based on dictionary of %d words: %f' % (len(ixtoword), gtppl)
  blob['gtppl'] = gtppl

  # dump result struct to file
  print 'saving result struct to %s' % (params['result_struct_filename'], )
  json.dump(blob, open(params['result_struct_filename'], 'w'))
Exemplo n.º 31
0
def main(params):
    batch_size = params['batch_size']
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(params)

    params['aux_inp_size'] = dp.aux_inp_size
    params['image_feat_size'] = dp.img_feat_size

    print 'Image feature size is %d, and aux input size is %d' % (
        params['image_feat_size'], params['aux_inp_size'])

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)
    params['vocabulary_size'] = len(misc['wordtoix'])
    params['output_size'] = len(misc['ixtoword'])  # these should match though
    params['use_dropout'] = 1

    # This initializes the model parameters and does matrix initializations
    lstmGenerator = LSTMGenerator(params)
    model, misc['update'], misc['regularize'] = (lstmGenerator.model_th,
                                                 lstmGenerator.update,
                                                 lstmGenerator.regularize)

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    # This is a bit of a hack, not happy about it
    model['bd'].set_value(bias_init_vector.astype(config.floatX))

    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list, f_pred_prob, cost, predTh,
     updatesLSTM) = lstmGenerator.build_model(model, params)

    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params['regc'] > 0.:
        reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
        reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']),
                                          name='reg_c')
        reg_cost = 0.
        for p in misc['regularize']:
            reg_cost += (model[p]**2).sum()
            reg_cost *= 0.5 * reg_c
        cost[0] += (reg_cost / params['batch_size'])

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name='f_eval')

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(cost[0], wrt=model.values())
    lr = tensor.scalar(name='lr', dtype=config.floatX)
    f_grad_shared, f_update, zg, rg, ud = lstmGenerator.rmsprop(
        lr, model, grads, inp_list, cost, params)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
    #print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []

    len_hist = defaultdict(int)

    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != 'None':
        zipp(model_init_from, model)
        zipp(rg_init, rg)
        print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
          checkpoint_init['perplexity']))

    for it in xrange(max_iters):
        t0 = time.time()
        # fetch a batch of data
        if params['sample_by_len'] == 0:
            batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        else:
            batch, l = dp.getRandBatchByLen(batch_size)
            len_hist[l] += 1

        if params['use_pos_tag'] != 'None':
            real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], None,
                                               sentTagMap, misc['ixtoword'])
        else:
            real_inp_list, lenS = prepare_data(batch, misc['wordtoix'])

        # Enable using dropout in training
        use_dropout.set_value(1.)

        # evaluate cost, gradient and perform parameter update
        cost = f_grad_shared(*real_inp_list)
        f_update(params['learning_rate'])
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = (2**(cost[1] / lenS))  #step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        total_cost = cost[0]
        #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_ppl2)

        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print '%d/%d batch done in %.3fs. at epoch %.2f. Cost now is %.3f and pplx is %.3f' % (it, max_iters, dt, \
        epoch, total_cost, smooth_train_ppl2)
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['smooth_train_ppl2'] = smooth_train_ppl2
            jstatus['val_ppl2'] = val_ppl2  # just write the last available one
            jstatus['train_ppl2'] = train_ppl2
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            #import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.)

            val_ppl2 = eval_split_theano(
                'val', dp, model, params, misc,
                f_eval)  # perform the evaluation on VAL set

            if epoch - params['lr_decay_st_epoch'] >= 0:
                params['learning_rate'] = params['learning_rate'] * params[
                    'lr_decay']
                params['lr_decay_st_epoch'] += 1

            print 'validation perplexity = %f, lr = %f' % (
                val_ppl2, params['learning_rate'])
            if params['sample_by_len'] == 1:
                print len_hist

            write_checkpoint_ppl_threshold = params[
                'write_checkpoint_ppl_threshold']
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (
                        params['dataset'], host, params['fappend'], val_ppl2)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model_npy
                    checkpoint['rgrads'] = rgrads_npy
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_ppl2
                    checkpoint['wordtoix'] = misc['wordtoix']
                    checkpoint['ixtoword'] = misc['ixtoword']
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print 'saved checkpoint in %s' % (filepath, )
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e
Exemplo n.º 32
0
def main(params):
    batch_size = params['batch_size']
    dataset = params['dataset']
    word_count_threshold = params['word_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    params['mode'] = 'CPU'

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)
    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    if params['mode'] == 'GPU':
        # force overwrite here. This is a bit of a hack, not happy about it
        model['bd'] = gp.garray(
            bias_init_vector.reshape(1, bias_init_vector.size))
    else:
        model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    max_iters = 1
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
                 train_ppl2, smooth_train_ppl2)

        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        #if it == 10 and do_grad_check:
        #  solver.gradCheck(batch, model, costfun)
        #  print 'done gradcheck. continue?'
        #  raw_input()
        #
        ## detect if loss is exploding and kill the job if so
        #total_cost = cost['total_cost']
        #if it == 0:
        #  total_cost0 = total_cost # store this initial cost
        #if total_cost > total_cost0 * 2:
        #  print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
        #  abort = True # set the abort flag, we'll break out
        #
        ## logging: write JSON files for visual inspection of the training
        #tnow = time.time()
        #if tnow > last_status_write_time + 60*1: # every now and then lets write a report
        #  last_status_write_time = tnow
        #  jstatus = {}
        #  jstatus['time'] = datetime.datetime.now().isoformat()
        #  jstatus['iter'] = (it, max_iters)
        #  jstatus['epoch'] = (epoch, max_epochs)
        #  jstatus['time_per_batch'] = dt
        #  jstatus['smooth_train_ppl2'] = smooth_train_ppl2
        #  jstatus['val_ppl2'] = val_ppl2 # just write the last available one
        #  jstatus['train_ppl2'] = train_ppl2
        #  json_worker_status['history'].append(jstatus)
        #  status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
        #  try:
        #    json.dump(json_worker_status, open(status_file, 'w'))
        #  except Exception, e: # todo be more clever here
        #    print 'tried to write worker status into %s but got error:' % (status_file, )
        #    print e
        #
        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        #is_last_iter = (it+1) == max_iters
        #if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
        #  val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
        #  print 'validation perplexity = %f' % (val_ppl2, )
        #  write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
        #  if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        #    if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
        #      # if we beat a previous record or if this is the first time
        #      # AND we also beat the user-defined threshold or it doesnt exist
        #      top_val_ppl2 = val_ppl2
        #      filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (dataset, host, params['fappend'], val_ppl2)
        #      filepath = os.path.join(params['checkpoint_output_directory'], filename)
        #      checkpoint = {}
        #      checkpoint['it'] = it
        #      checkpoint['epoch'] = epoch
        #      checkpoint['model'] = model
        #      checkpoint['params'] = params
        #      checkpoint['perplexity'] = val_ppl2
        #      checkpoint['wordtoix'] = misc['wordtoix']
        #      checkpoint['ixtoword'] = misc['ixtoword']
        #      try:
        #        pickle.dump(checkpoint, open(filepath, "wb"))
        #        print 'saved checkpoint in %s' % (filepath, )
        #      except Exception, e: # todo be more clever here
        #        print 'tried to write checkpoint into %s but got error: ' % (filepat, )
        #        print e
        cuda.close()
def main(params):
    batch_size = params['batch_size']
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']

    # fetch the data provider
    dp = getDataProvider(params)

    # Initialize the optimizer
    solver = Solver(params['solver'])

    params['aux_inp_size'] = dp.aux_inp_size
    params['image_feat_size'] = dp.img_feat_size

    print 'Image feature size is %d, and aux input size is %d' % (
        params['image_feat_size'], params['aux_inp_size'])

    misc = {
    }  # stores various misc items that need to be passed around the framework

    if params['checkpoint_file_name'] == 'None':
        # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
        # at least word_count_threshold number of times
        misc['wordtoix'], misc[
            'ixtoword'], bias_init_vector = preProBuildWordVocab(
                dp.iterSentences('train'), word_count_threshold)
    else:
        # Load Vocabulary from the checkpoint
        misc = checkpoint_init['misc']

    params['vocabulary_size'] = len(misc['wordtoix'])
    params['output_size'] = len(misc['ixtoword'])  # these should match though

    # This initializes the generator model parameters and does matrix initializations
    if params['t_eval_only'] == 0:
        generator = decodeGenerator(params)
        # Build the computational graph

        if params['use_encoder_for'] & 2:
            aux_enc_inp = generator.model_th['Wemb'] if params[
                'encode_gt_sentences'] else dp.aux_inputs.T
            hid_size = params['featenc_hidden_size']
            auxFeatEncoder = RecurrentFeatEncoder(
                hid_size,
                params['image_encoding_size'],
                params,
                mdl_prefix='aux_enc_',
                features=aux_enc_inp)
            mdlLen = len(generator.model_th.keys())
            generator.model_th.update(auxFeatEncoder.model_th)
            assert (len(generator.model_th.keys()) == (
                mdlLen + len(auxFeatEncoder.model_th.keys())))
            (auxenc_use_dropout, auxFeatEnc_inp, xAux,
             updatesLSTMAuxFeat) = auxFeatEncoder.build_model(
                 generator.model_th, params)

            if params['encode_gt_sentences']:
                # Reshape it size(batch_size, n_gt, hidden_size)
                xAux = xAux.reshape((-1, params['n_encgt_sent'],
                                     params['featenc_hidden_size']))
                # Convert it to size (batch_size, n_gt*hidden_size
                xAux = xAux.flatten(2)
                xI = tensor.zeros((batch_size, params['image_encoding_size']))
                imgFeatEnc_inp = []
        else:
            auxFeatEnc_inp = []
            imgFeatEnc_inp = []
            xAux = None
            xI = None

        (gen_inp_list, predLogProb, predIdx, predCand, gen_out, updatesLstm,
         seq_lengths) = generator.build_prediction_model(generator.model_th,
                                                         params,
                                                         xI=xI,
                                                         xAux=xAux)
        gen_inp_list = imgFeatEnc_inp + auxFeatEnc_inp + gen_inp_list
        gen_out = gen_out.reshape([
            gen_out.shape[0], -1, params['n_gen_samples'],
            params['vocabulary_size']
        ])
        #convert updates lstm to a tuple, this is to help merge it with grad updates
        updatesLstm = [(k, v) for k, v in updatesLstm.iteritems()]
        f_gen_only = theano.function(
            gen_inp_list, [predLogProb, predIdx, gen_out, seq_lengths],
            name='f_pred',
            updates=updatesLstm)

        modelGen = generator.model_th
        upListGen = generator.update_list

        if params['use_mle_train']:
            (use_dropout_genTF, inp_list_genTF, _, cost_genTF, _,
             updatesLSTM_genTF) = generator.build_model(
                 generator.model_th, params)
            f_eval_genTF = theano.function(inp_list_genTF,
                                           cost_genTF,
                                           name='f_eval')
            grads_genTF = tensor.grad(cost_genTF[0],
                                      wrt=modelGen.values(),
                                      add_names=True)
            lr_genTF = tensor.scalar(name='lr', dtype=config.floatX)
            f_grad_genTF, f_update_genTF, zg_genTF, rg_genTF, ud_genTF = solver.build_solver_model(
                lr_genTF, modelGen, grads_genTF, inp_list_genTF, cost_genTF,
                params)
    else:
        modelGen = []
        updatesLstm = []

    if params['met_to_track'] != []:
        trackMetargs = {'eval_metric': params['met_to_track']}
        refToks, scr_info = eval_prep_refs('val', dp, params['met_to_track'])
        trackMetargs['refToks'] = refToks
        trackMetargs['scr_info'] = scr_info

    # Initialize the evalator model
    if params['share_Wemb']:
        evaluator = decodeEvaluator(params, modelGen['Wemb'])
    else:
        evaluator = decodeEvaluator(params)
    modelEval = evaluator.model_th

    if params['t_eval_only'] == 0:
        # Build the evaluator graph to evaluate reference and generated captions
        if params.get('upd_eval_ref', 0):
            (refeval_inp_list, ref_f_pred_fns, ref_costs, ref_predTh,
             ref_modelEval) = evaluator.build_advers_eval(modelEval, params)
        (eval_inp_list, f_pred_fns, costs, predTh,
         modelEval) = evaluator.build_advers_eval(modelEval, params,
                                                  gen_inp_list, gen_out,
                                                  updatesLstm, seq_lengths)
    else:
        # Build the evaluator graph to evaluate only reference captions
        (eval_inp_list, f_pred_fns, costs, predTh,
         modelEval) = evaluator.build_advers_eval(modelEval, params)

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    if params['t_eval_only'] == 0:  # and 0:
        if params['checkpoint_file_name'] == 'None':
            modelGen['bd'].set_value(bias_init_vector.astype(config.floatX))
            if params.get('class_out_factoring', 0) == 1:
                modelGen['bdCls'].set_value(
                    bias_init_inter_class.astype(config.floatX))

    comb_inp_list = eval_inp_list
    if params['t_eval_only'] == 0:
        for inp in gen_inp_list:
            if inp not in comb_inp_list:
                comb_inp_list.append(inp)

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation or debug purposes
    if params['t_eval_only'] == 0:
        f_eval = theano.function(comb_inp_list,
                                 costs[:1],
                                 name='f_eval',
                                 updates=updatesLstm)
    else:
        f_eval = theano.function(comb_inp_list, costs[:1], name='f_eval')

    if params['share_Wemb']:
        modelEval.pop('Wemb')
    if params['fix_Wemb']:
        upListGen.remove('Wemb')

    #-------------------------------------------------------------------------------------------------------------------------
    # Now let's build a gradient computation graph and update mechanism
    #-------------------------------------------------------------------------------------------------------------------------
    # First compute gradient on the evaluator params w.r.t cost
    if params.get('upd_eval_ref', 0):
        gradsEval_ref = tensor.grad(ref_costs[0],
                                    wrt=modelEval.values(),
                                    add_names=True)
    gradsEval = tensor.grad(costs[0], wrt=modelEval.values(), add_names=True)

    # Update functions for the evaluator
    lrEval = tensor.scalar(name='lrEval', dtype=config.floatX)
    if params.get('upd_eval_ref', 0):
        f_grad_comp_eval_ref, f_param_update_eval_ref, _, _, _ = solver.build_solver_model(
            lrEval,
            modelEval,
            gradsEval_ref,
            refeval_inp_list,
            ref_costs[0],
            params,
            w_clip=params['eval_w_clip'])
    f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval = solver.build_solver_model(
        lrEval,
        modelEval,
        gradsEval,
        comb_inp_list,
        costs[:1],
        params,
        updatesLstm,
        w_clip=params['eval_w_clip'])

    # Now compute gradient on the generator params w.r.t the cost
    if params['t_eval_only'] == 0:
        gradsGen = tensor.grad(costs[1], wrt=modelGen.values(), add_names=True)
        lrGen = tensor.scalar(name='lrGen', dtype=config.floatX)
        # Update functions for the generator
        f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(
            lrGen, modelGen, gradsGen,
            comb_inp_list[:(len(comb_inp_list) - 1 +
                            params['gen_feature_matching'])], costs[1], params,
            updatesLstm)

    #-------------------------------------------------------------------------------------------------------------------------
    # If we want to track some metrics during the training, initialize stuff for that now
    #-------------------------------------------------------------------------------------------------------------------------
    print 'model init done.'
    if params['t_eval_only'] == 0:
        print 'Gen model has keys: ' + ', '.join(modelGen.keys())
    print 'Eval model has keys: ' + ', '.join(modelEval.keys())

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize('train', ofwhat='images')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    skip_first = 20
    iters_eval = 5
    iters_gen = 1

    cost_eval_iter = []
    cost_gen_iter = []
    trackSc_array = []

    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_ppl2 = -1
    smooth_train_ppl2 = 0.5  # initially size of dictionary of confusion
    smooth_train_cost = 0.0  # initially size of dictionary of confusion
    smooth_train_cost_gen = 1.0  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
    iter_out_file = os.path.join(
        'logs', 'advmodel_checkpoint_%s_%s_%s_log.npz' %
        (params['dataset'], host, params['fappend']))

    len_hist = defaultdict(int)
    t_print_sec = 30
    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != 'None':
        if params['t_eval_only'] != 1:
            print '\n Now initing gen Model:'
            zipp(model_init_gen_from, modelGen)
        if 'trackers' in checkpoint_init:
            trackSc_array = checkpoint_init['trackers'].get('trackScores', [])
        print '\n Now initing Eval Model:'
        zipp(model_init_eval_from, modelEval)
        #zipp(rg_init,rgGen)
        print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
          checkpoint_init['perplexity']))

    ##############################################################
    # Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
    def signal_handler(signal, frame):
        print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
        filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (
            params['dataset'], host, params['fappend'], val_ppl2)
        dumpCheckpoint(filename, params, modelGen, modelEval, misc, it,
                       val_ppl2)
        sys.exit(0)

    #signal.signal(signal.SIGINT, signal_handler)
    ##############################################################

    #In testing disable sampling and use the greedy approach!?
    generator.usegumbel.set_value(1)
    if params['met_to_track'] != []:
        tsc_max, tsc_mean, tsc_min = eval_gen_samps(f_gen_only, dp, params,
                                                    misc, params['rev_eval'],
                                                    **trackMetargs)
        trackSc_array.append((0, {
            evm + '_max': tsc_max[i]
            for i, evm in enumerate(params['met_to_track'])
        }))
        trackSc_array[-1][1].update({
            evm + '_mean': tsc_mean[i]
            for i, evm in enumerate(params['met_to_track'])
        })
        trackSc_array[-1][1].update({
            evm + '_min': tsc_min[i]
            for i, evm in enumerate(params['met_to_track'])
        })

    disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp=5)
    evaluator.use_noise.set_value(1.)
    eval_acc, gen_acc = eval_discrm_gen('val', dp, params, f_pred_fns[0], misc)
    # Re-enable sampling
    generator.usegumbel.set_value(1)

    np.savez(iter_out_file,
             eval_cost=np.array(cost_eval_iter),
             gen_cost=np.array(cost_gen_iter),
             tracksc=np.array(trackSc_array))
    smooth_train_cost = 0.0

    print '###################### NOW BEGINNING TRAINING #################################'

    for it in xrange(max_iters):
        t0 = time.time()
        # Enable using dropout in training
        evaluator.use_noise.set_value(1.)
        dt = 0.
        it2 = 0
        while eval_acc <= 60. or gen_acc >= 45. or it2 < iters_eval * skip_first:
            # fetch a batch of data
            t1 = time.time()

            s_probs = [
                0.6, 0.4, 0.0
            ] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
            batch = dp.sampAdversBatch(batch_size,
                                       n_sent=params['n_gen_samples'],
                                       probs=s_probs)
            cnn_inps = prepare_adv_data(batch,
                                        misc['wordtoix'],
                                        maxlen=params['maxlen'],
                                        prep_for=params['eval_model'])

            enc_inp_list = prepare_seq_features(
                batch,
                use_enc_for=params['use_encoder_for'],
                maxlen=params['maxlen'],
                use_shared_mem=params['use_shared_mem_enc'],
                enc_gt_sent=params['encode_gt_sentences'],
                n_enc_sent=params['n_encgt_sent'],
                wordtoix=misc['wordtoix'])
            eval_cost = f_grad_comp_eval(*(cnn_inps + enc_inp_list))

            if np.isnan(eval_cost[0]):
                import pdb
                pdb.set_trace()
            f_param_update_eval(params['learning_rate_eval'])

            # Track training statistics
            smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * eval_cost[
                0] if it > 0 else eval_cost[0]
            dt2 = time.time() - t1
            if it2 % 500 == 499:
                gb = 0.  #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
                print 'Iter %d/%d Eval Only Iter %d/%d, done. in %.3fs. Eval Cost is %.6f' % (
                    it, max_iters, it2, iters_eval * skip_first, dt2,
                    smooth_train_cost)
            if it2 % 100 == 99:
                eval_acc, gen_acc = eval_discrm_gen('val',
                                                    dp,
                                                    params,
                                                    f_pred_fns[0],
                                                    misc,
                                                    n_eval=500)
            it2 += 1

        evaluator.use_noise.set_value(1.)

        if it >= 0:
            skip_first = 1
        if it >= 100:
            skip_first = 1
        if it % 1000 == 999:
            skip_first = 1

        s_probs = [
            1.0, 0.0, 0.0
        ] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
        batch = dp.sampAdversBatch(batch_size,
                                   n_sent=params['n_gen_samples'],
                                   probs=s_probs)
        cnn_inps = prepare_adv_data(batch,
                                    misc['wordtoix'],
                                    maxlen=params['maxlen'],
                                    prep_for=params['eval_model'])
        enc_inp_list = prepare_seq_features(
            batch,
            use_enc_for=params['use_encoder_for'],
            maxlen=params['maxlen'],
            use_shared_mem=params['use_shared_mem_enc'],
            enc_gt_sent=params['encode_gt_sentences'],
            n_enc_sent=params['n_encgt_sent'],
            wordtoix=misc['wordtoix'])

        gen_cost = f_grad_comp_gen(
            *(cnn_inps[:(len(cnn_inps) - 1 + params['gen_feature_matching'])] +
              enc_inp_list))
        f_param_update_gen(params['learning_rate_gen'])

        if params['use_mle_train']:
            generator.usegumbel.set_value(0)
            batch, l = dp.getRandBatchByLen(batch_size)
            gen_inp_list, lenS = prepare_data(batch, misc['wordtoix'],
                                              params['maxlen'])
            cost_genMLE = f_grad_genTF(*gen_inp_list)
            f_update_genTF(np.float32(params['learning_rate_gen'] / 50.0))
            generator.usegumbel.set_value(1)

        dt = time.time() - t0
        # print training statistics
        smooth_train_cost_gen = gen_cost if it == 0 else 0.99 * smooth_train_cost_gen + 0.01 * gen_cost

        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec * 1:  # every now and then lets write a report
            gb = 0.  #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
            print 'Iter %d/%d done. in %.3fs. Eval Cost is %.6f, Gen Cost is %.6f, temp: %.4f' % (it, max_iters, dt, \
             smooth_train_cost, smooth_train_cost_gen, gb)
            last_status_write_time = tnow

        cost_eval_iter.append(smooth_train_cost)
        cost_gen_iter.append(smooth_train_cost_gen)

        if it % 500 == 499:
            # Run the generator on the validation set and compute some metrics
            generator.usegumbel.set_value(1)
            if params['met_to_track'] != []:
                #In testing set the temperature to very low, so that it is equivalent to Greed samples
                tsc_max, tsc_mean, tsc_min = eval_gen_samps(
                    f_gen_only, dp, params, misc, params['rev_eval'],
                    **trackMetargs)
                trackSc_array.append((it, {
                    evm + '_max': tsc_max[i]
                    for i, evm in enumerate(params['met_to_track'])
                }))
                trackSc_array[-1][1].update({
                    evm + '_mean': tsc_mean[i]
                    for i, evm in enumerate(params['met_to_track'])
                })
                trackSc_array[-1][1].update({
                    evm + '_min': tsc_min[i]
                    for i, evm in enumerate(params['met_to_track'])
                })

            disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp=5)
            generator.usegumbel.set_value(1)
            # if we beat a previous record or if this is the first time
            # AND we also beat the user-defined threshold or it doesnt exist
            top_val_ppl2 = gen_acc
        if it % 500 == 499:
            eval_acc, gen_acc = eval_discrm_gen('val',
                                                dp,
                                                params,
                                                f_pred_fns[0],
                                                misc,
                                                n_eval=500)
        if it % 1000 == 999:
            filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_genacc.p' % (
                params['dataset'], host, params['fappend'], it, gen_acc)
            dumpCheckpoint(filename, params, modelGen, modelEval, misc, it,
                           gen_acc)
        if it % 500 == 499:
            np.savez(iter_out_file,
                     eval_cost=np.array(cost_eval_iter),
                     gen_cost=np.array(cost_gen_iter),
                     tracksc=np.array(trackSc_array))

    # AND we also beat the user-defined threshold or it doesnt exist
    filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (
        params['dataset'], host, params['fappend'], it, g_acc)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, g_acc)
Exemplo n.º 34
0
def train(args):
    zero_words = cPickle.load(gzip.open("zero_shot.pkl.gz")) if args.zero_shot else set()
    def maybe_zero(s, i):
        overlap = set(tokenize(s)).intersection(zero_words)    
        if args.zero_shot and len(overlap) > 0:
            return numpy.zeros(i.shape)
        else:
            return i
    dataset = args.dataset
    tok_path = args.tokenizer
    model_path = args.model 
    d = dp.getDataProvider(dataset)
    pairs = list(d.iterImageSentencePair(split='train'))
    if args.shuffle:
        numpy.random.shuffle(pairs)
    output_size = len(pairs[0]['image']['feat'])
    embedding_size = args.embedding_size if args.embedding_size is not None else args.hidden_size
    tokenizer = cPickle.load(gzip.open(args.init_tokenizer)) \
                    if args.init_tokenizer else Tokenizer(min_df=args.word_freq_threshold, character=args.character)
    sentences, images = zip(*[ (pair['sentence']['raw'], maybe_zero(pair['sentence']['raw'],pair['image']['feat']))
                               for pair in pairs ])
    scaler = StandardScaler() if args.scaler == 'standard' else NoScaler()
    images = scaler.fit_transform(images)
    tokens = [ [tokenizer.encoder['PAD']] + sent + [tokenizer.encoder['END'] ] 
               for sent in tokenizer.fit_transform(sentences) ]
    tokens_inp = [ token[:-1] for token in tokens ]

    tokens_out = [ token[1:]  for token in tokens ]

    cPickle.dump(tokenizer, gzip.open(tok_path, 'w'))
    cPickle.dump(scaler, gzip.open('scaler.pkl.gz','w'))
    # Validation data
    valid_pairs = list(d.iterImageSentencePair(split='val'))
    valid_sents, valid_images  = zip(*[ (pair['sentence']['raw'], pair['image']['feat'])
                                        for pair in valid_pairs ])
    valid_images = scaler.transform(valid_images)
    valid_tokens = [ [ tokenizer.encoder['PAD'] ] + sent + [tokenizer.encoder['END'] ] 
                       for sent in tokenizer.transform(valid_sents) ]
    valid_tokens_inp = [ token[:-1] for token in valid_tokens ]
    valid_tokens_out = [ token[1:] for token in valid_tokens ]
    valid = (valid_tokens_inp, valid_tokens_out, valid_images)

    updater = passage.updates.Adam(lr=args.rate, clipnorm=args.clipnorm)
    if args.cost == 'MeanSquaredError':
        z_cost = MeanSquaredError
    elif args.cost == 'CosineDistance':
        z_cost = CosineDistance
    else:
        raise ValueError("Unknown cost")
    if args.hidden_type == 'gru':
        Recurrent = GatedRecurrent
    elif args.hidden_type == 'lstm':
        Recurrent = LstmRecurrent
    else:
        Recurrent = GatedRecurrent
    # if args.init_model is not None:
    #     model_init =  cPickle.load(open(args.init_model))
        
    #     def values(ps):
    #         return [ p.get_value() for p in ps ]
    #     # FIXME enable this for shared only embeddings 
    #     layers = [  Embedding(size=args.hidden_size, n_features=tokenizer.n_features, 
    #                           weights=values(model_init.layers[0].params)), 
    #                 Recurrent(seq_output=True, size=args.hidden_size, activation=args.activation,
    #                                weights=values(model_init.layers[1].params)),
    #                 Combined(left=Dense(size=tokenizer.n_features, activation='softmax', reshape=True,
    #                                     weights=values(model_init.layers[2].left.params)), 
    #                          right=Dense(size=output_size, activation=args.out_activation, 
    #                                      weights=values(model_init.layers[2].right.params))
    #                                  ) ]
        
    # else:
    # FIXME implement proper pretraining FIXME
    interpolated = True if not args.non_interpolated else False
    if args.model_type in ['add', 'mult', 'matrix']:
        if args.model_type == 'add':
            layer0 = Direct(size=embedding_size, n_features=tokenizer.n_features, op=Add)
        elif args.model_type == 'mult':
            layer0 = Direct(size=embedding_size, n_features=tokenizer.n_features, op=Mult)
        elif args.model_type == 'matrix':
            sqrt_size = embedding_size ** 0.5
            if not sqrt_size.is_integer():
                raise ValueError("Sqrt of embedding_size not integral for matrix model")
            layer0 = Direct(size=embedding_size, n_features=tokenizer.n_features, op=MatrixMult)
        layers = [ layer0, Dense(size=output_size, activation=args.out_activation, reshape=False) ]
        valid = (valid_tokens_inp, valid_images)
        model = RNN(layers=layers, updater=updater, cost=z_cost, 
                    iterator=SortedPadded(shuffle=False), verbose=1)
        model.fit(tokens_inp, images, n_epochs=args.iterations, batch_size=args.batch_size, len_filter=None,
                  snapshot_freq=args.snapshot_freq, path=model_path, valid=valid)
    elif args.model_type   == 'simple':
        layers = [ Embedding(size=embedding_size, n_features=tokenizer.n_features),
                   Recurrent(seq_output=False, size=args.hidden_size, activation=args.activation),
                   Dense(size=output_size, activation=args.out_activation, reshape=False)
                 ]
        valid = (valid_tokens_inp, valid_images)
        model = RNN(layers=layers, updater=updater, cost=z_cost, 
                    iterator=SortedPadded(shuffle=False), verbose=1)
        model.fit(tokens_inp, images, n_epochs=args.iterations, batch_size=args.batch_size, len_filter=None,
                  snapshot_freq=args.snapshot_freq, path=model_path, valid=valid)
        # FIXME need validation
    elif args.model_type   == 'deep-simple':
        layers = [ Embedding(size=embedding_size, n_features=tokenizer.n_features),
                   Recurrent(seq_output=True,  size=args.hidden_size, activation=args.activation),
                   Recurrent(seq_output=False, size=args.hidden_size, activation=args.activation),
                   Dense(size=output_size, activation=args.out_activation, reshape=False)
                 ]
        valid = (valid_tokens_inp, valid_images)
        model = RNN(layers=layers, updater=updater, cost=z_cost, 
                    iterator=SortedPadded(shuffle=False), verbose=1)
        model.fit(tokens_inp, images, n_epochs=args.iterations, batch_size=args.batch_size, len_filter=None,
                  snapshot_freq=args.snapshot_freq, path=model_path, valid=valid)
        # FIXME need validation
        
    elif args.model_type == 'shared_all':
        if args.zero_shot:
            raise NotImplementedError # FIXME zero_shot not implemented
        layers = [  Embedding(size=embedding_size, n_features=tokenizer.n_features), 
                    Recurrent(seq_output=True, size=args.hidden_size, activation=args.activation),
                    Combined(left=Dense(size=tokenizer.n_features, activation='softmax', reshape=True), 
                             right=Dense(size=output_size, activation=args.out_activation, reshape=False)) ] 

        model = ForkedRNN(layers=layers, updater=updater, cost_y=CategoricalCrossEntropySwapped, 
                          cost_z=z_cost, alpha=args.alpha, size_y=tokenizer.n_features, 
                          verbose=1, interpolated=interpolated) 

        model.fit(tokens_inp, tokens_out, images, n_epochs=args.iterations, batch_size=args.batch_size,
                  snapshot_freq=args.snapshot_freq, path=model_path, valid=valid)
    elif args.model_type == 'shared_embeddings':
        layers = [ Embedding(size=embedding_size, n_features=tokenizer.n_features),
                   Combined(left=Stacked([Recurrent(seq_output=True, size=args.hidden_size, activation=args.activation), 
                                          Dense(size=tokenizer.n_features, activation='softmax', reshape=True)]), 
                            left_type='id',
                            right=Stacked([Recurrent(seq_output=False, size=args.hidden_size, activation=args.activation), 
                                           Dense(size=output_size, activation=args.out_activation, reshape=False)]),
                            right_type='id')
                        ]

        model = ForkedRNN(layers=layers, updater=updater, cost_y=CategoricalCrossEntropySwapped, 
                          cost_z=z_cost, alpha=args.alpha, size_y=tokenizer.n_features, 
                          verbose=1, interpolated=interpolated, zero_shot=args.zero_shot)

        model.fit(tokens_inp, tokens_out, images, n_epochs=args.iterations, batch_size=args.batch_size,
                  snapshot_freq=args.snapshot_freq, path=model_path, valid=valid)

    cPickle.dump(model, gzip.open(model_path,"w"))
Exemplo n.º 35
0
def main(params):
  word_count_threshold = params['word_count_threshold']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  # fetch the data provider
  dp = getDataProvider(params)
  # Initialize the optimizer 
  solver = Solver(params['solver'])

  params['image_feat_size'] = dp.img_feat_size

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  params['use_dropout'] = 1 

  if params['fine_tune'] == 1:
    params['mode'] = 'multimodal_lstm' if params['multimodal_lstm'] == 0 else 'multimodal_lstm'
    if params['checkpoint_file_name'] != None:
        params['batch_size'] = dp.dataset['batchsize']
        misc['wordtoix'] = checkpoint_init['wordtoix']
        misc['ixtoword'] = checkpoint_init['ixtoword']
    batch_size = 1
    num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
  else:
    params['mode'] = 'batchtrain'
    batch_size = params['batch_size']
    num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  
  params['vocabulary_size'] = len(misc['wordtoix'])
  pos_samp = np.arange(batch_size,dtype=np.int32)

  # This initializes the model parameters and does matrix initializations  
  evalModel = decodeEvaluator(params)
  model, misc['update'], misc['regularize'] = (evalModel.model_th, evalModel.updateP, evalModel.regularize)
  
  # Define the computational graph for relating the input image features and word indices to the
  # log probability cost funtion. 
  (use_dropout, inp_list,
     miscOuts, cost, predTh, model) = evalModel.build_model(model, params)

  # Add the regularization cost. Since this is specific to trainig and doesn't get included when we 
  # evaluate the cost on test or validation data, we leave it here outside the model definition
  if params['regc'] > 0.:
      reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
      reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']), name='reg_c')
      reg_cost = 0.
      for p in misc['regularize']:
        reg_cost += (model[p] ** 2).sum()
        reg_cost *= 0.5 * reg_c 
      cost[0] += (reg_cost /params['batch_size'])
    
  # Compile an evaluation function.. Doesn't include gradients
  # To be used for validation set evaluation
  f_eval= theano.function(inp_list, cost, name='f_eval')

  # Now let's build a gradient computation graph and rmsprop update mechanism
  grads = tensor.grad(cost, wrt=model.values())
  lr = tensor.scalar(name='lr',dtype=config.floatX)
  if params['sim_minibatch'] > 0:
    f_grad_accum, f_clr, ag = solver.accumGrads(model,grads,inp_list,cost, params['sim_minibatch'])
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(lr, model, ag,
                                      inp_list, cost, params)
  else: 
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(lr, model, grads,
                                      inp_list, cost, params)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())

  # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
  # Hence in case of coco/flickr this will 5* no of images
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  inner_loop =   params['sim_minibatch'] if params['sim_minibatch'] > 0 else 1
  max_iters = max_iters / inner_loop 
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs/ inner_loop))
  top_val_ppl2 = -1
  smooth_train_cost = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  len_hist = defaultdict(int)
  
  ## Initialize the model parameters from the checkpoint file if we are resuming training
  if params['checkpoint_file_name'] != None:
    zipp(model_init_from,model)
    zipp(rg_init,rg)
    print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
      checkpoint_init['perplexity']))
  elif params['init_from_imagernn'] != None:
    # Initialize word vecs and image emb from generative model file
    rnnCv = pickle.load(open(params['init_from_imagernn'], 'rb'))
    model['Wemb'].set_value(rnnCv['model']['Wemb'])
    model['WIemb'].set_value(rnnCv['model']['WIemb_aux'])
    misc['wordtoix'] = rnnCv['wordtoix']
    misc['ixtoword'] = rnnCv['ixtoword']
    print("\n Initialized Word embedding and Image embeddings from gen mode %s" % (params['init_from_imagernn']))


  use_dropout.set_value(1.)
  #################### Main Loop ############################################
  for it in xrange(max_iters):
    t0 = time.time()
    # fetch a batch of data
    cost_inner = np.zeros((inner_loop,),dtype=np.float32)
    if params['sim_minibatch'] > 0:
        for i_l in xrange(inner_loop):
            batch,pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],params['mode'],thresh=0.3) 
            real_inp_list, lenS = prepare_data(batch,misc['wordtoix'],maxlen=params['maxlen'],pos_samp=pos_samp,prep_for=params['eval_model'])
            if params['fine_tune'] == 1:
               real_inp_list.append(pos_samp_sent)
            cost_inner[i_l] = f_grad_accum(*real_inp_list)
    else:
        batch,pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],params['mode'],thresh=0.3)
        real_inp_list, lenS = prepare_data(batch,misc['wordtoix'],maxlen=params['maxlen'],pos_samp=pos_samp,prep_for=params['eval_model'])
        if params['fine_tune'] == 1:
           real_inp_list.append(pos_samp_sent)
    # Enable using dropout in training 
    cost = f_grad_shared(*real_inp_list)
    f_update(params['learning_rate'])
    dt = time.time() - t0
   
    # Reset accumulated gradients to 0
    if params['sim_minibatch'] > 0:
        f_clr()
    #print 'model: ' + ' '.join([str(np.isnan(model[m].get_value()).any()) for m in model])
    #print 'rg: ' +' '.join([str(np.isnan(rg[i].get_value()).any()) for i in xrange(len(rg))])
    #print 'zg: ' + ' '.join([str(np.isnan(zg[i].get_value()).any()) for i in xrange(len(zg))])
    #print 'ud: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])
    #import pdb; pdb.set_trace()
    #print 'udAft: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])

    # print training statistics
    epoch = it*inner_loop * 1.0 / num_iters_one_epoch
    total_cost = (np.e**-cost + (np.e**(-cost_inner)).sum()*(params['sim_minibatch'] > 0))/ (1 + params['sim_minibatch'])
    #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
    #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
    #         train_ppl2, smooth_train_cost)
    if it == 0: smooth_train_cost = total_cost 
    else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * total_cost

    tnow = time.time()
    if tnow > last_status_write_time + 60*1: # every now and then lets write a report
      print '%d/%d batch done in %.3fs. at epoch %.2f. Prob now is %.3f' % (it, max_iters, dt, \
		epoch, smooth_train_cost)
      last_status_write_time = tnow
      jstatus = {}
      jstatus['time'] = datetime.datetime.now().isoformat()
      jstatus['iter'] = (it, max_iters)
      jstatus['epoch'] = (epoch, max_epochs)
      jstatus['time_per_batch'] = dt
      jstatus['val_ppl2'] = val_ppl2 # just write the last available one
      json_worker_status['history'].append(jstatus)
      status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
      #import pdb; pdb.set_trace()
      try:
        json.dump(json_worker_status, open(status_file, 'w'))
      except Exception, e: # todo be more clever here
        print 'tried to write worker status into %s but got error:' % (status_file, )
        print e
    
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      # Disable using dropout in validation 
      use_dropout.set_value(0.)

      val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
      if epoch - params['lr_decay_st_epoch'] >= 0:
        params['learning_rate'] = params['learning_rate'] * params['lr_decay']
        params['lr_decay_st_epoch'] += 1
      
      print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
      if params['sample_by_len'] == 1:
        print len_hist

      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          #top_val_ppl2 = val_ppl2
          filename = '%s_checkpoint_%s_%s_%s_%.2f_%.2f.p' % (params['eval_model'], params['dataset'], host, params['fappend'],val_ppl2,smooth_train_cost)
          filepath = os.path.join(params['checkpoint_output_directory'], filename)
          model_npy = unzip(model)
          rgrads_npy = unzip(rg)
          checkpoint = {}
          checkpoint['it'] = it
          checkpoint['epoch'] = epoch
          checkpoint['model'] = model_npy
          checkpoint['rgrads'] = rgrads_npy
          checkpoint['params'] = params
          checkpoint['perplexity'] = val_ppl2
          checkpoint['wordtoix'] = misc['wordtoix']
          checkpoint['ixtoword'] = misc['ixtoword']
          try:
            pickle.dump(checkpoint, open(filepath, "wb"))
            print 'saved checkpoint in %s' % (filepath, )
          except Exception, e: # todo be more clever here
            print 'tried to write checkpoint into %s but got error: ' % (filepath, )
            print e

      use_dropout.set_value(1.)
Exemplo n.º 36
0
def main(params):
    batch_size = params['batch_size']
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    #--------------------------------- Init data provider and load data+features #---------------------------------#
    # fetch the data provider
    dp = getDataProvider(params)

    params['aux_inp_size'] = params['featenc_hidden_size'] * params[
        'n_encgt_sent'] if params['encode_gt_sentences'] else dp.aux_inp_size
    params['featenc_hidden_size'] = params['featenc_hidden_size'] if params[
        'encode_gt_sentences'] else params['aux_inp_size']

    params['image_feat_size'] = dp.img_feat_size
    print 'Image feature size is %d, and aux input size is %d' % (
        params['image_feat_size'], params['aux_inp_size'])

    #--------------------------------- Preprocess sentences and build Vocabulary #---------------------------------#
    misc = {
    }  # stores various misc items that need to be passed around the framework
    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    if params['checkpoint_file_name'] == 'None':
        if params['class_out_factoring'] == 0:
            misc['wordtoix'], misc[
                'ixtoword'], bias_init_vector = preProBuildWordVocab(
                    dp.iterSentences('train'), word_count_threshold)
        else:
            [misc['wordtoix'], misc['classes']
             ], [misc['ixtoword'], misc['clstotree'], misc['ixtoclsinfo']
                 ], [bias_init_vector, bias_init_inter_class
                     ] = preProBuildWordVocab(dp.iterSentences('train'),
                                              word_count_threshold, params)
            params['nClasses'] = bias_init_inter_class.shape[0]
            params['ixtoclsinfo'] = misc['ixtoclsinfo']
    else:
        misc = checkpoint_init['misc']
        params['nClasses'] = checkpoint_init['params']['nClasses']
        if 'ixtoclsinfo' in misc:
            params['ixtoclsinfo'] = misc['ixtoclsinfo']

    params['vocabulary_size'] = len(misc['wordtoix'])
    params['output_size'] = len(misc['ixtoword'])  # these should match though
    print len(misc['wordtoix']), len(misc['ixtoword'])

    #------------------------------ Initialize the solver/generator and build forward path #-----------------------#
    # Initialize the optimizer
    solver = Solver(params['solver'])
    # This initializes the model parameters and does matrix initializations
    lstmGenerator = decodeGenerator(params)
    model, misc['update'], misc['regularize'] = (lstmGenerator.model_th,
                                                 lstmGenerator.update_list,
                                                 lstmGenerator.regularize)

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    # This is a bit of a hack
    if params['checkpoint_file_name'] == 'None':
        model['bd'].set_value(bias_init_vector.astype(config.floatX))
        if params['class_out_factoring'] == 1:
            model['bdCls'].set_value(
                bias_init_inter_class.astype(config.floatX))

    #----------------- If we are using feature encoders -----------------------
    # This mode can now also be used for encoding GT sentences.
    if params['use_encoder_for'] & 1:
        if params['encode_gt_sentences']:
            xI = tensor.zeros((batch_size, params['image_encoding_size']))
            imgFeatEnc_inp = []
        else:
            imgFeatEncoder = RecurrentFeatEncoder(params['image_feat_size'],
                                                  params['word_encoding_size'],
                                                  params,
                                                  mdl_prefix='img_enc_',
                                                  features=dp.features.T)
            mdlLen = len(model.keys())
            model.update(imgFeatEncoder.model_th)
            assert (len(model.keys()) == (mdlLen +
                                          len(imgFeatEncoder.model_th.keys())))
            misc['update'].extend(imgFeatEncoder.update_list)
            misc['regularize'].extend(imgFeatEncoder.regularize)
            (imgenc_use_dropout, imgFeatEnc_inp, xI,
             updatesLSTMImgFeat) = imgFeatEncoder.build_model(model, params)
    else:
        xI = None
        imgFeatEnc_inp = []

    if params['use_encoder_for'] & 2:
        aux_enc_inp = model['Wemb'] if params[
            'encode_gt_sentences'] else dp.aux_inputs.T
        hid_size = params['featenc_hidden_size']
        auxFeatEncoder = RecurrentFeatEncoder(hid_size,
                                              params['image_encoding_size'],
                                              params,
                                              mdl_prefix='aux_enc_',
                                              features=aux_enc_inp)
        mdlLen = len(model.keys())
        model.update(auxFeatEncoder.model_th)
        assert (len(model.keys()) == (mdlLen +
                                      len(auxFeatEncoder.model_th.keys())))
        misc['update'].extend(auxFeatEncoder.update_list)
        misc['regularize'].extend(auxFeatEncoder.regularize)
        (auxenc_use_dropout, auxFeatEnc_inp, xAux,
         updatesLSTMAuxFeat) = auxFeatEncoder.build_model(model, params)

        if params['encode_gt_sentences']:
            # Reshape it size(batch_size, n_gt, hidden_size)
            xAux = xAux.reshape(
                (-1, params['n_encgt_sent'], params['featenc_hidden_size']))
            # Convert it to size (batch_size, n_gt*hidden_size
            xAux = xAux.flatten(2)

    else:
        auxFeatEnc_inp = []
        xAux = None

    #--------------------------------- Initialize the Attention Network #-------------------------------#
    if params['use_attn'] != None:
        attnModel = AttentionNetwork(params['image_feat_size'],
                                     params['hidden_size'],
                                     params,
                                     mdl_prefix='attn_mlp_')
        mdlLen = len(model.keys())
        model.update(attnModel.model_th)
        assert (len(model.keys()) == (mdlLen + len(attnModel.model_th.keys())))
        misc['update'].extend(attnModel.update_list)
        misc['regularize'].extend(attnModel.regularize)
        attn_nw_func = attnModel.build_model
    else:
        attn_nw_func = None

    #--------------------------------- Build the language model graph #---------------------------------#
    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list_gen, f_pred_prob, cost, predTh,
     updatesLSTM) = lstmGenerator.build_model(model,
                                              params,
                                              xI,
                                              xAux,
                                              attn_nw=attn_nw_func)

    inp_list = imgFeatEnc_inp + auxFeatEnc_inp + inp_list_gen
    #--------------------------------- Cost function and gradient computations setup #---------------------------------#
    costGrad = cost[0]
    # Add class uncertainity to final cost
    #if params['class_out_factoring'] == 1:
    #  costGrad += cost[2]
    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params['regc'] > 0.:
        reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
        reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']),
                                          name='reg_c')
        reg_cost = 0.
        for p in misc['regularize']:
            reg_cost += (model[p]**2).sum()
            reg_cost *= 0.5 * reg_c
        costGrad += (reg_cost / params['batch_size'])

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name='f_eval')

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(costGrad, wrt=model.values())
    lr = tensor.scalar(name='lr', dtype=config.floatX)
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
        lr, model, grads, inp_list, cost, params)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
    #print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    #-------------------------------- Intialize the prediction path if needed by evaluator ----------------------------#
    evalKwargs = {
        'eval_metric': params['eval_metric'],
        'f_gen': lstmGenerator.predict,
        'beamsize': params['eval_beamsize']
    }
    if params['eval_metric'] != 'perplex':
        lstmGenerator.prepPredictor(None, params, params['eval_beamsize'])
        refToks, scr_info = eval_prep_refs('val', dp, params['eval_metric'])
        evalKwargs['refToks'] = refToks
        evalKwargs['scr_info'] = scr_info
        valMetOp = operator.gt
    else:
        valMetOp = operator.lt

    if params['met_to_track'] != []:
        trackMetargs = {
            'eval_metric': params['met_to_track'],
            'f_gen': lstmGenerator.predict,
            'beamsize': params['eval_beamsize']
        }
        lstmGenerator.prepPredictor(None, params, params['eval_beamsize'])
        refToks, scr_info = eval_prep_refs('val', dp, params['met_to_track'])
        trackMetargs['refToks'] = refToks
        trackMetargs['scr_info'] = scr_info

    #--------------------------------- Iterations and Logging intializations ------------------------------------------#
    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_sc = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_sc = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    #json_worker_status['params'] = params
    json_worker_status['history'] = []
    len_hist = defaultdict(int)

    #Initialize Tracking the perplexity of train and val, with iters.
    train_perplex = []
    val_perplex = []
    trackSc_array = []

    #-------------------------------------- Load previously saved model ------------------------------------------------#
    #- Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != 'None':
        zipp(model_init_from, model)
        if params['restore_grads'] == 1:
            zipp(rg_init, rg)
        #Copy trackers from previous checkpoint
        if 'trackers' in checkpoint_init:
            train_perplex = checkpoint_init['trackers']['train_perplex']
            val_perplex = checkpoint_init['trackers']['val_perplex']
            trackSc_array = checkpoint_init['trackers'].get('trackScores', [])
        print(
            """\nContinuing training from previous model\n. Already run for %0.2f epochs with
            validation perplx at %0.3f\n""" %
            (checkpoint_init['epoch'], checkpoint_init['perplexity']))

    #--------------------------------------  MAIN LOOP ----------------------------------------------------------------#
    for it in xrange(max_iters):
        t0 = time.time()
        # Enable using dropout in training
        use_dropout.set_value(float(params['use_dropout']))
        if params['use_encoder_for'] & 1:
            imgenc_use_dropout.set_value(float(params['use_dropout']))
        if params['use_encoder_for'] & 2:
            auxenc_use_dropout.set_value(float(params['use_dropout']))

        epoch = it * 1.0 / num_iters_one_epoch
        #-------------------------------------- Prepare batch-------------------------------------------#
        # fetch a batch of data
        if params['sample_by_len'] == 0:
            batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        else:
            batch, l = dp.getRandBatchByLen(batch_size)
            len_hist[l] += 1

        enc_inp_list = prepare_seq_features(
            batch,
            use_enc_for=params['use_encoder_for'],
            maxlen=params['maxlen'],
            use_shared_mem=params['use_shared_mem_enc'],
            enc_gt_sent=params['encode_gt_sentences'],
            n_enc_sent=params['n_encgt_sent'],
            wordtoix=misc['wordtoix'])

        if params['use_pos_tag'] != 'None':
            gen_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                params['maxlen'],
                sentTagMap,
                misc['ixtoword'],
                rev_sents=params['reverse_sentence'],
                use_enc_for=params['use_encoder_for'],
                use_unk_token=params['use_unk_token'])
        else:
            gen_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                params['maxlen'],
                rev_sents=params['reverse_sentence'],
                use_enc_for=params['use_encoder_for'],
                use_unk_token=params['use_unk_token'])

        if params['sched_sampling_mode'] != None:
            gen_inp_list.append(epoch)

        real_inp_list = enc_inp_list + gen_inp_list

        #import ipdb; ipdb.set_trace()
        #---------------------------------- Compute cost and apply gradients ---------------------------#
        # evaluate cost, gradient and perform parameter update
        cost = f_grad_shared(*real_inp_list)
        f_update(params['learning_rate'])
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = (2**(cost[1] / lenS))  #step_struct['stats']['ppl2']
        # smooth exponentially decaying moving average
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out

        total_cost = cost[0]
        if it == 0: smooth_cost = total_cost  # start out where we start out
        smooth_cost = 0.99 * smooth_cost + 0.01 * total_cost

        #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_ppl2)

        #---------------------------------- Write a report into a json file ---------------------------#
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print '%d/%d batch done in %.3fs. at epoch %.2f. Cost now is %.3f and pplx is %.3f' \
                    % (it, max_iters, dt, epoch, smooth_cost, smooth_train_ppl2)
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['smooth_train_ppl2'] = smooth_train_ppl2
            jstatus['val_sc'] = val_sc  # just write the last available one
            jstatus['val_metric'] = params[
                'eval_metric']  # just write the last available one
            jstatus['train_ppl2'] = train_ppl2
            #if params['class_out_factoring'] == 1:
            #  jstatus['class_cost'] = float(cost[2])
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            #import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        #--------------------------------- VALIDATION ---------------------------#
        #- perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.)
            if params['use_encoder_for'] & 1:
                imgenc_use_dropout.set_value(0.)
            if params['use_encoder_for'] & 2:
                auxenc_use_dropout.set_value(0.)

            # perform the evaluation on VAL set
            val_sc = eval_split_theano('val', dp, model, params, misc, f_eval,
                                       **evalKwargs)
            val_sc = val_sc[0]
            val_perplex.append((it, val_sc))
            train_perplex.append((it, smooth_train_ppl2))

            if params['met_to_track'] != []:
                track_sc = eval_split_theano('val', dp, model, params, misc,
                                             f_eval, **trackMetargs)
                trackSc_array.append((it, {
                    evm: track_sc[i]
                    for i, evm in enumerate(params['met_to_track'])
                }))

            if epoch - params['lr_decay_st_epoch'] >= 0:
                params['learning_rate'] = params['learning_rate'] * params[
                    'lr_decay']
                params['lr_decay_st_epoch'] += 1

            print 'validation %s = %f, lr = %f' % (
                params['eval_metric'], val_sc, params['learning_rate'])
            #if params['sample_by_len'] == 1:
            #  print len_hist

            #----------------------------- SAVE THE MODEL -------------------#
            write_checkpoint_ppl_threshold = params[
                'write_checkpoint_ppl_threshold']
            if valMetOp(val_sc, top_val_sc) or top_val_sc < 0:
                if valMetOp(val_sc, write_checkpoint_ppl_threshold
                            ) or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_sc = val_sc
                    filename = 'model_checkpoint_%s_%s_%s_%s%.2f.p' % (
                        params['dataset'], host, params['fappend'],
                        params['eval_metric'][:3], val_sc)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model_npy
                    checkpoint['rgrads'] = rgrads_npy
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_sc
                    checkpoint['misc'] = misc
                    checkpoint['trackers'] = {
                        'train_perplex': train_perplex,
                        'val_perplex': val_perplex,
                        'trackScores': trackSc_array
                    }
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print 'saved checkpoint in %s' % (filepath, )
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e
Exemplo n.º 37
0
def main(params):

    # load the checkpoint
    checkpoint_path = params['checkpoint_path']
    max_images = params['max_images']

    print 'loading checkpoint %s' % (checkpoint_path, )
    checkpoint = pickle.load(open(checkpoint_path, 'rb'))
    checkpoint_params = checkpoint['params']
    dataset = checkpoint_params['dataset']
    model = checkpoint['model']

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}
    misc['wordtoix'] = checkpoint['wordtoix']
    ixtoword = checkpoint['ixtoword']

    blob = {
    }  # output blob which we will dump to JSON for visualizing the results
    blob['params'] = params
    blob['checkpoint_params'] = checkpoint_params
    blob['imgblobs'] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)
    all_bleu_scores = []
    n = 0
    #for img in dp.iterImages(split = 'test', shuffle = True, max_images = max_images):
    for img in dp.iterImages(split='test', max_images=max_images):
        n += 1
        print 'image %d/%d:' % (n, max_images)
        references = [x['tokens']
                      for x in img['sentences']]  # as list of lists of tokens
        kwparams = {'beam_size': params['beam_size']}
        Ys = BatchGenerator.predict([{
            'image': img
        }], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob['img_path'] = img['local_file_path']
        img_blob['imgid'] = img['imgid']

        # encode the human-provided references
        img_blob['references'] = []
        for gtwords in references:
            print 'GT: ' + ' '.join(gtwords)
            img_blob['references'].append({'text': ' '.join(gtwords)})

        # now evaluate and encode the top prediction
        top_predictions = Ys[
            0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[
            0]  # these are sorted with highest on top
        candidate = [ixtoword[ix] for ix in top_prediction[1]]
        print 'PRED: (%f) %s' % (top_prediction[0], ' '.join(candidate))
        bleu_scores = evalCandidate(candidate, references)
        print 'BLEU: B-1: %f B-2: %f B-3: %f' % tuple(bleu_scores)
        img_blob['candidate'] = {
            'text': ' '.join(candidate),
            'logprob': top_prediction[0],
            'bleu': bleu_scores
        }

        all_bleu_scores.append(bleu_scores)
        blob['imgblobs'].append(img_blob)

    print 'final average bleu scores:'
    bleu_averages = [
        sum(x[i] for x in all_bleu_scores) * 1.0 / len(all_bleu_scores)
        for i in xrange(3)
    ]
    blob['final_result'] = {'bleu': bleu_averages}
    print 'FINAL BLEU: B-1: %f B-2: %f B-3: %f' % tuple(bleu_averages)

    # now also evaluate test split perplexity
    gtppl = eval_split('test',
                       dp,
                       model,
                       checkpoint_params,
                       misc,
                       eval_max_images=max_images)
    print 'perplexity of ground truth words: %f' % (gtppl, )
    blob['gtppl'] = gtppl

    # dump result struct to file
    print 'saving result struct to %s' % (params['result_struct_filename'], )
    json.dump(blob, open(params['result_struct_filename'], 'w'))
Exemplo n.º 38
0
def main(params):
  batch_size = params['batch_size']
  word_count_threshold = params['word_count_threshold']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  # fetch the data provider
  dp = getDataProvider(params)

  params['aux_inp_size'] = dp.aux_inp_size
  params['image_feat_size'] = dp.img_feat_size

  print 'Image feature size is %d, and aux input size is %d'%(params['image_feat_size'],params['aux_inp_size'])

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  params['vocabulary_size'] = len(misc['wordtoix'])
  params['output_size'] = len(misc['ixtoword']) # these should match though
  params['use_dropout'] = 1 

  # This initializes the model parameters and does matrix initializations  
  lstmGenerator = LSTMGenerator(params)
  model, misc['update'], misc['regularize'] = (lstmGenerator.model_th, lstmGenerator.update, lstmGenerator.regularize)
  
  # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
  # This is a bit of a hack, not happy about it
  model['bd'].set_value(bias_init_vector.astype(config.floatX))

  # Define the computational graph for relating the input image features and word indices to the
  # log probability cost funtion. 
  (use_dropout, inp_list,
     f_pred_prob, cost, predTh, updatesLSTM) = lstmGenerator.build_model(model, params)

  # Add the regularization cost. Since this is specific to trainig and doesn't get included when we 
  # evaluate the cost on test or validation data, we leave it here outside the model definition
  if params['regc'] > 0.:
      reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
      reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']), name='reg_c')
      reg_cost = 0.
      for p in misc['regularize']:
        reg_cost += (model[p] ** 2).sum()
        reg_cost *= 0.5 * reg_c 
      cost[0] += (reg_cost /params['batch_size'])
    
  # Compile an evaluation function.. Doesn't include gradients
  # To be used for validation set evaluation
  f_eval= theano.function(inp_list, cost, name='f_eval')

  # Now let's build a gradient computation graph and rmsprop update mechanism
  grads = tensor.grad(cost[0], wrt=model.values())
  lr = tensor.scalar(name='lr',dtype=config.floatX)
  f_grad_shared, f_update, zg, rg, ud = lstmGenerator.rmsprop(lr, model, grads,
                                      inp_list, cost, params)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())
  #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
  #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
  #print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

  # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
  # Hence in case of coco/flickr this will 5* no of images
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  top_val_ppl2 = -1
  smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  len_hist = defaultdict(int)
  
  ## Initialize the model parameters from the checkpoint file if we are resuming training
  if params['checkpoint_file_name'] != 'None':
    zipp(model_init_from,model)
    zipp(rg_init,rg)
    print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
      checkpoint_init['perplexity']))
  
  for it in xrange(max_iters):
    t0 = time.time()
    # fetch a batch of data
    if params['sample_by_len'] == 0:
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
    else: 
        batch,l = dp.getRandBatchByLen(batch_size)
        len_hist[l] += 1

    if params['use_pos_tag'] != 'None':
        real_inp_list, lenS = prepare_data(batch,misc['wordtoix'],None,sentTagMap,misc['ixtoword'])
    else:    
        real_inp_list, lenS = prepare_data(batch,misc['wordtoix'])
    
    # Enable using dropout in training 
    use_dropout.set_value(1.)

    # evaluate cost, gradient and perform parameter update
    cost = f_grad_shared(*real_inp_list)
    f_update(params['learning_rate'])
    dt = time.time() - t0

    # print training statistics
    train_ppl2 = (2**(cost[1]/lenS)) #step_struct['stats']['ppl2']
    smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
    if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
    epoch = it * 1.0 / num_iters_one_epoch
    total_cost = cost[0]
    #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
    #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
    #         train_ppl2, smooth_train_ppl2)

    tnow = time.time()
    if tnow > last_status_write_time + 60*1: # every now and then lets write a report
      print '%d/%d batch done in %.3fs. at epoch %.2f. Cost now is %.3f and pplx is %.3f' % (it, max_iters, dt, \
		epoch, total_cost, smooth_train_ppl2)
      last_status_write_time = tnow
      jstatus = {}
      jstatus['time'] = datetime.datetime.now().isoformat()
      jstatus['iter'] = (it, max_iters)
      jstatus['epoch'] = (epoch, max_epochs)
      jstatus['time_per_batch'] = dt
      jstatus['smooth_train_ppl2'] = smooth_train_ppl2
      jstatus['val_ppl2'] = val_ppl2 # just write the last available one
      jstatus['train_ppl2'] = train_ppl2
      json_worker_status['history'].append(jstatus)
      status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
      #import pdb; pdb.set_trace()
      try:
        json.dump(json_worker_status, open(status_file, 'w'))
      except Exception, e: # todo be more clever here
        print 'tried to write worker status into %s but got error:' % (status_file, )
        print e
    
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      # Disable using dropout in validation 
      use_dropout.set_value(0.)

      val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
      
      if epoch - params['lr_decay_st_epoch'] >= 0:
        params['learning_rate'] = params['learning_rate'] * params['lr_decay']
        params['lr_decay_st_epoch'] += 1
      
      print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
      if params['sample_by_len'] == 1:
        print len_hist

        
      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          top_val_ppl2 = val_ppl2
          filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (params['dataset'], host, params['fappend'], val_ppl2)
          filepath = os.path.join(params['checkpoint_output_directory'], filename)
          model_npy = unzip(model)
          rgrads_npy = unzip(rg)
          checkpoint = {}
          checkpoint['it'] = it
          checkpoint['epoch'] = epoch
          checkpoint['model'] = model_npy
          checkpoint['rgrads'] = rgrads_npy
          checkpoint['params'] = params
          checkpoint['perplexity'] = val_ppl2
          checkpoint['wordtoix'] = misc['wordtoix']
          checkpoint['ixtoword'] = misc['ixtoword']
          try:
            pickle.dump(checkpoint, open(filepath, "wb"))
            print 'saved checkpoint in %s' % (filepath, )
          except Exception, e: # todo be more clever here
            print 'tried to write checkpoint into %s but got error: ' % (filepath, )
            print e
Exemplo n.º 39
0
def main(params):
  batch_size = params['batch_size']
  dataset = params['dataset']
  word_count_threshold = params['word_count_threshold']
  do_grad_check = params['do_grad_check']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  params['mode'] = 'CPU'

  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  # delegate the initialization of the model to the Generator class
  BatchGenerator = decodeGenerator(params)
  init_struct = BatchGenerator.init(params, misc)
  model, misc['update'], misc['regularize'] = (init_struct['model'], init_struct['update'], init_struct['regularize'])
  
  if params['mode'] == 'GPU':
    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = gp.garray(bias_init_vector.reshape(1, bias_init_vector.size))
  else:
    model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
  print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

  # initialize the Solver and the cost function
  solver = Solver()
  def costfun(batch, model):
    # wrap the cost function to abstract some things away from the Solver
    return RNNGenCost(batch, model, params, misc)

  # calculate how many iterations we need
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  abort = False
  top_val_ppl2 = -1
  smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []
  max_iters = 1
  for it in xrange(max_iters):
    if abort: break
    t0 = time.time()
    # fetch a batch of data
    batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
    # evaluate cost, gradient and perform parameter update
    step_struct = solver.step(batch, model, costfun, **params)
    cost = step_struct['cost']
    dt = time.time() - t0

    # print training statistics
    train_ppl2 = step_struct['stats']['ppl2']
    smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
    if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
    epoch = it * 1.0 / num_iters_one_epoch
    print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
          % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
             train_ppl2, smooth_train_ppl2)

    # perform gradient check if desired, with a bit of a burnin time (10 iterations)
    #if it == 10 and do_grad_check:
    #  solver.gradCheck(batch, model, costfun)
    #  print 'done gradcheck. continue?'
    #  raw_input()
    #
    ## detect if loss is exploding and kill the job if so
    #total_cost = cost['total_cost']
    #if it == 0:
    #  total_cost0 = total_cost # store this initial cost
    #if total_cost > total_cost0 * 2:
    #  print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
    #  abort = True # set the abort flag, we'll break out
    #
    ## logging: write JSON files for visual inspection of the training
    #tnow = time.time()
    #if tnow > last_status_write_time + 60*1: # every now and then lets write a report
    #  last_status_write_time = tnow
    #  jstatus = {}
    #  jstatus['time'] = datetime.datetime.now().isoformat()
    #  jstatus['iter'] = (it, max_iters)
    #  jstatus['epoch'] = (epoch, max_epochs)
    #  jstatus['time_per_batch'] = dt
    #  jstatus['smooth_train_ppl2'] = smooth_train_ppl2
    #  jstatus['val_ppl2'] = val_ppl2 # just write the last available one
    #  jstatus['train_ppl2'] = train_ppl2
    #  json_worker_status['history'].append(jstatus)
    #  status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
    #  try:
    #    json.dump(json_worker_status, open(status_file, 'w'))
    #  except Exception, e: # todo be more clever here
    #    print 'tried to write worker status into %s but got error:' % (status_file, )
    #    print e
    #
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    #is_last_iter = (it+1) == max_iters
    #if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
    #  val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
    #  print 'validation perplexity = %f' % (val_ppl2, )
    #  write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
    #  if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
    #    if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
    #      # if we beat a previous record or if this is the first time
    #      # AND we also beat the user-defined threshold or it doesnt exist
    #      top_val_ppl2 = val_ppl2
    #      filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (dataset, host, params['fappend'], val_ppl2)
    #      filepath = os.path.join(params['checkpoint_output_directory'], filename)
    #      checkpoint = {}
    #      checkpoint['it'] = it
    #      checkpoint['epoch'] = epoch
    #      checkpoint['model'] = model
    #      checkpoint['params'] = params
    #      checkpoint['perplexity'] = val_ppl2
    #      checkpoint['wordtoix'] = misc['wordtoix']
    #      checkpoint['ixtoword'] = misc['ixtoword']
    #      try:
    #        pickle.dump(checkpoint, open(filepath, "wb"))
    #        print 'saved checkpoint in %s' % (filepath, )
    #      except Exception, e: # todo be more clever here
    #        print 'tried to write checkpoint into %s but got error: ' % (filepat, )
    #        print e
    cuda.close()
def main(params):
  batch_size = params['batch_size']
  word_count_threshold = params['word_count_threshold']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  # fetch the data provider
  dp = getDataProvider(params)
  
  # Initialize the optimizer 
  solver = Solver(params['solver'])

  params['aux_inp_size'] = dp.aux_inp_size
  params['image_feat_size'] = dp.img_feat_size

  print 'Image feature size is %d, and aux input size is %d'%(params['image_feat_size'],params['aux_inp_size'])

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  params['vocabulary_size'] = len(misc['wordtoix'])
  params['output_size'] = len(misc['ixtoword']) # these should match though
  params['use_dropout'] = 1 

  # This initializes the model parameters and does matrix initializations  
  generator = decodeGenerator(params)
  (gen_inp_list, predLogProb, predIdx, predCand, wOut_emb, updatesLstm) = generator.build_prediction_model(
                                            generator.model_th, params, params['beam_size'])
  wOut_emb = wOut_emb.reshape([wOut_emb.shape[0],wOut_emb.shape[2]])
  f_gen_only = theano.function(gen_inp_list, [predLogProb, predIdx, wOut_emb], name='f_pred', updates=updatesLstm)
  
  modelGen = generator.model_th
  upListGen = generator.update_list
 
  if params['share_Wemb']:
     evaluator = decodeEvaluator(params, modelGen['Wemb'])
  else:
     evaluator = decodeEvaluator(params)
  modelEval = evaluator.model_th
  # Define the computational graph for relating the input image features and word indices to the
  # log probability cost funtion. 
  
  (use_dropout_eval, eval_inp_list,
     f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params, gen_inp_list, wOut_emb)
  
  # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
  # This is a bit of a hack, not happy about it
  comb_inp_list = eval_inp_list
  for inp in gen_inp_list:
    if inp not in comb_inp_list:
        comb_inp_list.append(inp)
  # Compile an evaluation function.. Doesn't include gradients
  # To be used for validation set evaluation
  f_eval= theano.function(comb_inp_list, costs, name='f_eval', updates=updatesLstm)

  # Now let's build a gradient computation graph and rmsprop update mechanism
  if params['share_Wemb']:
    modelEval.pop('Wemb')
  if params['fix_Wemb']:
    upListGen.remove('Wemb')
  
  modelGenUpD =  OrderedDict()
  for k in upListGen:
   modelGenUpD[k] = modelGen[k]
  gradsEval = tensor.grad(costs[0], wrt=modelEval.values(),add_names=True)
  gradsGen = tensor.grad(costs[1], wrt=modelGenUpD.values(), add_names=True)
 
  lrEval = tensor.scalar(name='lrEval',dtype=config.floatX)
  f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval= solver.build_solver_model(lrEval, modelEval, gradsEval,
                                      comb_inp_list, costs[0], params)
  
  lrGen = tensor.scalar(name='lrGen',dtype=config.floatX)
  f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(lrGen, modelGenUpD, gradsGen,
                                      comb_inp_list, costs[1], params)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(modelGen.keys())

  # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
  # Hence in case of coco/flickr this will 5* no of images
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  iters_eval= num_iters_one_epoch//2
  iters_gen = num_iters_one_epoch//4

  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  top_val_ppl2 = -1
  smooth_train_ppl2 = 0.5 # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  len_hist = defaultdict(int)
  t_print_sec = 60
  ## Initialize the model parameters from the checkpoint file if we are resuming training
  if params['checkpoint_file_name'] != 'None':
    zipp(model_init_from,modelGen)
    #zipp(rg_init,rgGen)
    print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
      checkpoint_init['perplexity']))
  
  pos_samp = np.arange(batch_size,dtype=np.int32)
  print batch_size

  ##############################################################
  # Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
  def signal_handler(signal, frame):
    print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
    filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (params['dataset'], host, params['fappend'], val_ppl2)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
    sys.exit(0)
  signal.signal(signal.SIGINT, signal_handler)
  ##############################################################

  for it in xrange(max_epochs):
    epoch = it * 1.0 / num_iters_one_epoch
    # Enable using dropout in training 
    use_dropout_eval.set_value(1.)
    for it2 in xrange(iters_eval): 
        t0 = time.time()
        # fetch a batch of data
        batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
        real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
        
        # evaluate cost, gradient and perform parameter update
        cost = f_grad_comp_eval(*real_inp_list)
        f_param_update_eval(params['learning_rate_eval'])
        dt = time.time() - t0
        # Track training statistics
        train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
        if it2 == 0: smooth_train_ppl2 = train_ppl2 
        if it2 == 0: smooth_train_cost = cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost 
        
        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
          print 'Eval Cnn in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_eval, dt, \
	    	smooth_train_cost,smooth_train_ppl2)
          last_status_write_time = tnow
    
    print 'Done training the descriminative model for now. Switching to Genereative model'
    print 'Eval N/W in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)

    
    filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_EVOnly.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
    
    
    # Disable Cnn dropout while training gen network
    use_dropout_eval.set_value(0.)
    for it2 in xrange(iters_gen): 
        t0 = time.time()
        # fetch a batch of data
        batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
        real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
        #import pdb; pdb.set_trace()

        # evaluate cost, gradient and perform parameter update
        #if any([np.isnan(modelGen[m].get_value()).any() for m in modelGen]):
        #    print 'Somebodys NAN!!!'
        #    break;
        #asd = f_gen_only(real_inp_list[2],real_inp_list[3])
        
        #print it2,asd[-1].shape, real_inp_list[0].shape

        #if asd[-1].shape[0] > real_inp_list[0].shape[0]:
        #   import pdb; pdb.set_trace()


        cost = f_grad_comp_gen(*real_inp_list)

        #print it2,cost
        
        #if any([np.isnan(zg_gen[i].get_value()).any() for i in xrange(len(zg_gen))]):
        #    print 'Somebody zg is NAN!!!'
        #    break;
        #if any([np.isnan(rg_gen[i].get_value()).any() for i in xrange(len(rg_gen))]) or any([(rg_gen[i].get_value()<0).any() for i in xrange(len(rg_gen))]):
        #    print 'Somebody rg is NAN!!!'
        #    break;
        
        f_param_update_gen(params['learning_rate_gen'])
        dt = time.time() - t0
        # print training statistics
        train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
        if it2 == 0: smooth_train_ppl2 = train_ppl2 
        if it2 == 0: smooth_train_cost = cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost 
        
        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
          print 'Gen Lstm in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_gen, dt, \
	    	smooth_train_cost,smooth_train_ppl2)
          last_status_write_time = tnow
    
    print 'Done training the generative model for now. Switching to Genereative model. Final Stats are:'
    print 'Gen Lstm in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)
    
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    is_last_iter = 1
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      # Disable using dropout in validation 
     # use_dropout.set_value(0.)

     # val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
     # 
     # if it - params['lr_decay_st_epoch'] >= 0:
     #   params['learning_rate'] = params['learning_rate'] * params['lr_decay']
     #   params['lr_decay_st_epoch'] += 1
     # 
     # print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
     # if params['sample_by_len'] == 1:
     #   print len_hist
        
      val_ppl2 = smooth_train_ppl2
      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          #top_val_ppl2 = val_ppl2
          filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
          dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
def run(checkpoint):

    max_images = -1
    dump_folder = ""

    checkpoint_params = checkpoint["params"]
    dataset = checkpoint_params["dataset"]
    model = checkpoint["model"]
    beam_size = 1
    # dump_folder = params['dump_folder']

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}
    misc["wordtoix"] = checkpoint["wordtoix"]
    ixtoword = checkpoint["ixtoword"]

    blob = {}  # output blob which we will dump to JSON for visualizing the results
    # blob['params'] = params
    blob["checkpoint_params"] = checkpoint_params
    blob["imgblobs"] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)
    n = 0
    all_references = []
    all_candidates = []
    captions_res = []
    for img in dp.iterImages(split="test", max_images=max_images):
        n += 1
        print "image %d/%d:" % (n, max_images)
        references = [" ".join(x["tokens"]) for x in img["sentences"]]  # as list of lists of tokens
        kwparams = {"beam_size": beam_size}
        Ys = BatchGenerator.predict([{"image": img}], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob["img_path"] = img["local_file_path"]
        img_blob["imgid"] = img["imgid"]
        img_blob["id"] = img["id"]

        if dump_folder:
            # copy source file to some folder. This makes it easier to distribute results
            # into a webpage, because all images that were predicted on are in a single folder
            source_file = img["local_file_path"]
            target_file = os.path.join(dump_folder, os.path.basename(img["local_file_path"]))
            os.system("cp %s %s" % (source_file, target_file))

        # encode the human-provided references
        img_blob["references"] = []
        flag = True
        for gtsent in references:
            if flag:
                print "GT: " + gtsent
                flag = False
            img_blob["references"].append({"text": gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[0]  # these are sorted with highest on top
        candidate = " ".join([ixtoword[ix] for ix in top_prediction[1] if ix > 0])  # ix 0 is the END token, skip that
        print "PRED: (%f) %s" % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)
        captions_res.append({"image_id": img_blob["id"], "caption": candidate})
        img_blob["candidate"] = {"text": candidate, "logprob": top_prediction[0]}
        blob["imgblobs"].append(img_blob)

    alg_name = checkpoint["algorithm"]
    res_file_name = checkpoint["outdir"] + "/captions_val_" + alg_name + "_results.json"
    json.dump(captions_res, open(res_file_name, "w"))

    from eval_tools import metrics

    scores = metrics.run(dataset, alg_name, checkpoint["outdir"])

    return scores
def main(params):

    # load the checkpoint
    checkpoint_path = params["checkpoint_path"]
    max_images = params["max_images"]

    print "loading checkpoint %s" % (checkpoint_path,)
    checkpoint = pickle.load(open(checkpoint_path, "rb"))
    checkpoint_params = checkpoint["params"]
    dataset = checkpoint_params["dataset"]
    model = checkpoint["model"]
    dump_folder = params["dump_folder"]

    if dump_folder:
        print "creating dump folder " + dump_folder
        os.system("mkdir -p " + dump_folder)

    ## ANAND - CHANGE TEST PATH

    # fetch the data provider
    # dp = getDataProvider(dataset)
    # pdb.set_trace()
    dp = getDataProvider("example_images")

    misc = {}
    misc["wordtoix"] = checkpoint["wordtoix"]
    ixtoword = checkpoint["ixtoword"]

    blob = {}  # output blob which we will dump to JSON for visualizing the results
    blob["params"] = params
    blob["checkpoint_params"] = checkpoint_params
    blob["imgblobs"] = []

    # iterate over all images in test set and predict sentences
    BatchGenerator = decodeGenerator(checkpoint_params)
    n = 0
    all_references = []
    all_candidates = []

    for img in dp.iterImages(split="test", max_images=max_images):
        n += 1
        print "image %d/%d:" % (n, max_images)

        # pdb.set_trace()

        references = [" ".join(x["tokens"]) for x in img["sentences"]]  # as list of lists of tokens
        kwparams = {"beam_size": params["beam_size"]}
        Ys = BatchGenerator.predict([{"image": img}], model, checkpoint_params, **kwparams)

        img_blob = {}  # we will build this up
        img_blob["img_path"] = img["local_file_path"]
        img_blob["imgid"] = img["imgid"]

        if dump_folder:
            # copy source file to some folder. This makes it easier to distribute results
            # into a webpage, because all images that were predicted on are in a single folder
            source_file = img["local_file_path"]
            target_file = os.path.join(dump_folder, os.path.basename(img["local_file_path"]))
            os.system("cp %s %s" % (source_file, target_file))

        # encode the human-provided references
        img_blob["references"] = []
        for gtsent in references:
            print "GT: " + gtsent
            img_blob["references"].append({"text": gtsent})

        # now evaluate and encode the top prediction
        top_predictions = Ys[0]  # take predictions for the first (and only) image we passed in
        top_prediction = top_predictions[0]  # these are sorted with highest on top
        candidate = " ".join([ixtoword[ix] for ix in top_prediction[1] if ix > 0])  # ix 0 is the END token, skip that
        print "PRED: (%f) %s" % (top_prediction[0], candidate)

        # save for later eval
        all_references.append(references)
        all_candidates.append(candidate)

        img_blob["candidate"] = {"text": candidate, "logprob": top_prediction[0]}
        blob["imgblobs"].append(img_blob)

    # use perl script to eval BLEU score for fair comparison to other research work
    # first write intermediate files
    print "writing intermediate files into eval/"
    open("eval/output", "w").write("\n".join(all_candidates))
    for q in xrange(5):
        open("eval/reference" + ` q `, "w").write("\n".join([x[q] for x in all_references]))
    # invoke the perl script to get BLEU scores
    print "invoking eval/multi-bleu.perl script..."
    owd = os.getcwd()
    os.chdir("eval")
    os.system("./multi-bleu.perl reference < output")
    os.chdir(owd)

    # now also evaluate test split perplexity
    gtppl = eval_split("test", dp, model, checkpoint_params, misc, eval_max_images=max_images)
    print "perplexity of ground truth words based on dictionary of %d words: %f" % (len(ixtoword), gtppl)
    blob["gtppl"] = gtppl

    # dump result struct to file
    print "saving result struct to %s" % (params["result_struct_filename"],)
    json.dump(blob, open(params["result_struct_filename"], "w"))
Exemplo n.º 43
0
def test(args):
    if args.random_seed is not None:
        numpy.random.seed(args.random_seed)
    def scramble(words):
        ixs = range(len(words))
        random.shuffle(ixs)
        return [ words[ix] for ix in ixs ]
    testInfo = {'argv':       sys.argv,
                'dataset':    args.dataset,
                'scramble':   args.scramble,
                'model_type': args.model_type,
                'alpha':      args.alpha,
                'iter_predict': args.iter_predict,
                'task':       'paraphrase' if args.paraphrase else 'image',
                'items':      []}
    D = Cdist()
    dataset = args.dataset
    suffix = '' if args.iter_predict is None else ".{0}".format(args.iter_predict)
    model = cPickle.load(gzip.open('model.dat.gz' + suffix))
    tokenizer = cPickle.load(gzip.open('tok.pkl.gz'))
    scaler = cPickle.load(gzip.open('scaler.pkl.gz'))
    real_stdout = sys.stdout
    with open('/dev/null', 'w') as f:
        sys.stdout = f
        d = dp.getDataProvider(args.dataset)
    sys.stdout = real_stdout
    pairs = list(d.iterImageSentencePair(split='val'))
    inputs = [ scramble(s) if args.scramble else s for s in tokenizer.transform([ pair['sentence']['raw'] for pair in pairs]) ]
    if args.paraphrase:
        candidates = tokenizer.transform([ pair['sentence']['raw'] for pair in pairs]) # No scrambling of candidates
        if   args.paraphrase_state == 'output_vis':
            preds           = model.predict(inputs)
            candidates_pred = model.predict(candidates)
        elif args.paraphrase_state == 'hidden_text':
            preds, _           = predict_h(model, inputs) 
            candidates_pred, _ = predict_h(model, candidates)
        elif args.paraphrase_state == 'hidden_vis' and hasattr(model.layers[1], 'left'):
            _, preds           = predict_h(model, inputs)
            _, candidates_pred = predict_h(model, candidates)
        elif args.paraphrase_state == 'hidden_vis' and not hasattr(model.layers[1], 'left'):
            preds           = predict_h_simple(model, inputs)
            candidates_pred = predict_h_simple(model, candidates)
        elif args.paraphrase_state == 'hidden_multi':
            preds           = numpy.hstack(predict_h(model, inputs))
            candidates_pred = numpy.hstack(predict_h(model, candidates))
        else:
            raise ValueError("Unknown state")

        distances = D.cosine_distance(preds, candidates_pred)
        #distances = cdist(preds, candidates_pred, metric='cosine')
        N = 0
        score = 0.0
        imgids = numpy.array([ pair['sentence']['imgid'] for pair in pairs ])
        sentids = numpy.array([ pair['sentence']['sentid'] for pair in pairs])
        for j,row in enumerate(distances):
            imgid = pairs[j]['sentence']['imgid']
            sentid = pairs[j]['sentence']['sentid']
            best = numpy.argsort(row)
            rank = numpy.where((imgids[best] == imgid) * (sentids[best] != sentid))[0][0] + 1
            top4 = [ pairs[b]['sentence']['imgid'] for b 
                         in best[0:5] if sentid != pairs[b]['sentence']['sentid'] ][0:4] # exclude self
            top4sent = [ pairs[b]['sentence']['sentid'] for b in best[0:5] if sentid != pairs[b]['sentence']['sentid'] ][0:4]
            score = score + sum([i == imgid for i in top4 ])/4.0
            N = N+1
            itemInfo = {'sentid':sentid, 'imgid': imgid, 'score': sum([i == imgid for i in top4 ])/4.0, 
                        'rank': rank, 'topn': top4 , 'topnsentid': top4sent,
                        'input': tokenizer.inverse_transform([inputs[j]])[0]}
            testInfo['items'].append(itemInfo)
        print args.iter_predict, N, score/N
    else:
        preds     = model.predict(inputs)
        images    = list(d.iterImages(split='val')) 
        distances = D.cosine_distance(preds, scaler.transform([image['feat'] for image in images ]))
        errors = 0
        N = 0
        imgids = numpy.array([ img['imgid'] for img in images ])
        for j,row in enumerate(distances):
            imgid = pairs[j]['sentence']['imgid']
            sentid = pairs[j]['sentence']['sentid']
            best = numpy.argsort(row)
            rank = numpy.where(imgids[best] == imgid)[0][0] + 1
            top5 = [ images[b]['imgid'] for b in best[:5] ]
            N = N+1
            if imgid not in top5:
                errors = errors + 1
            itemInfo = {'sentid':sentid, 'imgid': imgid, 'score': float(imgid in top5), 'rank': rank, 'topn': top5, 
                        'input':tokenizer.inverse_transform([inputs[j]])[0] }
            testInfo['items'].append(itemInfo)
        print args.iter_predict, errors, N, errors/N
    testInfoPath = 'testInfo-task={0}-scramble={1}-iter_predict={2}.json.gz'.format(testInfo['task'], testInfo['scramble'], testInfo['iter_predict'])
    json.dump(testInfo, gzip.open(testInfoPath,'w'))
 def __init__(self, dataset, nbOfTopics,iterations=1500, pert = None):
     self.nbOfTopics=nbOfTopics
     self.iterations=iterations
     self.dataprovider = getDataProvider(dataset, pert)
     self.nbOfWordOccurences = 5