xP=[x.replace('lfw','lfw_aegan') for x in P] xQ=[x.replace('lfw','lfw_aegan') for x in Q] PF=model.mean_F(utils.image_feed(xP[:K],image_dims)) QF=model.mean_F(utils.image_feed(xQ[:K],image_dims)) if config.scaling=='beta': WF=(QF-PF)/((QF-PF)**2).mean() elif config.scaling=='none': WF=(QF-PF) max_iter=config.iter init=o # for each interpolation step for delta in delta_params: print(xX,b,delta) t2=time.time() Y=model.F_inverse(XF+WF*delta,max_iter=max_iter,initial_image=init) t3=time.time() print('{} minutes to reconstruct'.format((t3-t2)/60.0)) result[-1].append(Y) max_iter=config.iter//2 init=Y result=numpy.asarray(result) original=numpy.asarray(original) if 'color' in postprocess: result=utils.color_match(numpy.expand_dims(original,1),result) m=imageutils.montage(numpy.concatenate([numpy.expand_dims(original,1),result],axis=1)) imageutils.write('results/demo1.png',m) print('Output is results/demo1.png') t1=time.time() print('{} minutes ({} minutes per image).'.format((t1-t0)/60.0,(t1-t0)/60.0/result.shape[0]/result.shape[1]))
landmarks[19] = landmarks[19]-pad_dis landmarks[24] = landmarks[24]+pad_dis print ("eye_dis:{},pad_dis:{}".format(eye_dis,pad_dis)) left = min(landmarks[...,1])-eye_dis right = max(landmarks[...,1])+eye_dis up = min(landmarks[...,0])-eye_dis down = max(landmarks[...,0])+eye_dis #print(im.shape) rect = im[max(0,left):right,max(0,up):down] #print (rect.shape) if rect.shape[0]>h_max or rect.shape[1]>w_max: rect = rect / 255.0 scale = min(float(h_max)/rect.shape[0],float(w_max)/rect.shape[1]) print (scale) rect = imageutils.scale(rect,scale) imageutils.write(postprocess_name,rect) else: rect = Image.fromarray(rect) rect.save(postprocess_name) #(x_p,y_p) = rect.size print ("Saving image as:{}".format(postprocess_name)) # if x < width: # w_pad = width-x # if y < height: # h_pad = height - y # im = np.lib.pad(im_tmp,((w_pad//2,w_pad-w_pad//2),(h_pad//2,h_pad-h_pad//2)),'constant',constant_values=255) # elif y > height: # im = np.lib.pad(im_tmp,(w_pad//2,w_pad-w_pad//2),'constant',constant_values=255) # y = y * width // x # im_resize = im_tmp.resize((width,y),Image.ANTIALIAS) # new_name = root +'new_'+imname
max_iter=max_iter, initial_image=init) max_iter = config.step_iter init = result i = i + 1 delta = delta + ddelta if 'mask' in postprocess and os.path.exists(X_mask): result *= mask result += original * (1 - mask) if 'color' in postprocess: result = utils.color_match(numpy.asarray([original]), numpy.asarray([[result]]))[0, 0] if 'mask' in postprocess and os.path.exists(X_mask): result *= mask result += original * (1 - mask) imageutils.write( prefix_path + postfix_comment + '/{:06}.png'.format(i), result) # generate movie cmd = [ 'ffmpeg', '-y', '-f', 'image2', '-i', prefix_path + postfix_comment + '/%06d.png', '-crf', '19', '-g', '60', '-r', '30', '-s', '{}x{}'.format(original.shape[1], original.shape[0]), '-pix_fmt', 'yuv420p', prefix_path + postfix_comment + '_movie.{}'.format(config.output_format) ] print(' '.join(pipes.quote(x) for x in cmd)) subprocess.check_call(cmd) print('Output is {}'.format(prefix_path + postfix_comment + '_movie.{}'.format(config.output_format)))
print('{} minutes to reconstruct'.format((t3-t2)/60.0)) result.append(Y) max_iter=config.iter//2 init=Y result=numpy.asarray([result]) original=numpy.asarray([original]) X_mask=prefix_path+'-mask.png' if 'mask' in postprocess and os.path.exists(X_mask): mask=imageutils.resize(imageutils.read(X_mask),image_dims) result*=mask result+=original*(1-mask) if 'color' in postprocess: result=utils.color_match(numpy.asarray([original]),result) if 'mask' in postprocess and os.path.exists(X_mask): result*=mask result+=original*(1-mask) if config.include_original: m=imageutils.montage(numpy.concatenate([numpy.expand_dims(original,1),result],axis=1)) else: m=imageutils.montage(result) if config.output: opath=config.output else: opath='{}_{}_{}{}.{}'.format(prefix_path,timestamp,config.method,postfix_comment,config.output_format) imageutils.write(opath,m) opathlist.append(opath) print('Outputs are {}'.format(' '.join(opathlist))) t1=time.time() print('{} minutes ({} minutes per image).'.format((t1-t0)/60.0,(t1-t0)/60.0/len(X)/len(delta_params)))
def main(config): caffe.set_device(config['device_id']) caffe.set_mode_gpu() # step 1. configure cnn if config['arch']=='A4,G1': # an ensemble of alexnet and googlenet models=[ caffe.Net('deploy-alexnet_full_conv.prototxt','minc-alexnet_full_conv.caffemodel',caffe.TEST), caffe.Net('deploy-googlenet_full_conv_no_pooling.prototxt','minc-googlenet_full_conv.caffemodel',caffe.TEST) ] # alexnet needs a padded input to get a full-frame prediction input_padding=[97,0] # nominal footprint is 46.4% for A4, 23.2% for G1 scales=[256/550.0,256/1100.0] bgr_mean=numpy.array([104,117,124],dtype=numpy.float32) # inputs must be a multiple of the stride # otherwise, the full-frame prediction will be shifted effective_stride=[32,32] # TODO: A4 needs spatial oversampling (# shifts = 2) else: raise NotImplementedError # step 2. configure crf if config['crf']=='1': # these are the CRF parameters for MINC (see supplemental) # the parameters can have a big impact on the output # so they should be tuned for the target domain # (MINC note: this code is not exactly the same as the # original MINC code so these parameters will not # generate the exact same results) crf_params={ "bilateral_pairwise_weight": 5.0, # w_p "bilateral_theta_xy": 0.1, # \theta_p "bilateral_theta_lab_l": 20.0, # \theta_L "bilateral_theta_lab_ab": 5.0, # \theta_ab "n_crf_iters": 10, "unary_prob_padding": 1e-05, } elif config['crf']=='matclass': # new CRF parameters crf_params={ "bilateral_pairwise_weight": 8.0, # w_p "bilateral_theta_xy": 0.5, # \theta_p "bilateral_theta_lab_l": 0.5, # \theta_L "bilateral_theta_lab_ab": 3.0, # \theta_ab "n_crf_iters": 10, "unary_prob_padding": 1e-05, } else: raise NotImplementedError pad_value=bgr_mean[::-1]/255.0 # step 3. extract class prediction maps for ipath in config['input']: # read image original=imageutils.read(ipath) z=config['min_dim']/float(min(original.shape[:2])) crf_shape=(23,int(round(original.shape[0]*z)),int(round(original.shape[1]*z))) # predict 6 maps: 3 scales for each model maps=[] for index,model in enumerate(models): p=input_padding[index] s=scales[index] for index2,multiscale in enumerate([0.7071067811865476,1.0,1.4142135623730951]): # resample the input so it is a multiple of the stride # and the receptive field matches the nominal footprint scale_factor=(256/s)/float(min(original.shape[:2])) scaled_size=[nearest_multiple(original.shape[i]*scale_factor*multiscale,effective_stride[index]) for i in range(2)] scaled=imageutils.resize(original,scaled_size) if p>0: # add input padding for alexnet pad=numpy.ones((scaled.shape[0]+2*p,scaled.shape[1]+2*p,scaled.shape[2]),dtype=scaled.dtype)*pad_value pad[p:-p,p:-p]=scaled scaled=pad # predict and resample the map to be the correct size data=preprocess_and_reshape(scaled,model,bgr_mean=bgr_mean) output=model.forward_all(data=data)['prob'][0] output=scipy.ndimage.interpolation.zoom(output,[1.0,crf_shape[1]/float(output.shape[1]),crf_shape[2]/float(output.shape[2])],order=1) maps.append(output) # step 4. average all maps crf_map=numpy.asarray(maps).mean(axis=0) if False: # output extra maps for debugging for i,x,j in [(i,x,j) for i,x in enumerate(maps) for j in range(23)]: imageutils.write('zzz_map_{}{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),x[j]) for j in range(23): imageutils.write('zzz_mean_map_{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),crf_map[j]) imageutils.write('zzz_naive_labels.png',labels_to_color(numpy.argsort(-crf_map.reshape(23,-1).T).T.reshape(*crf_map.shape)[0])) crf_color=imageutils.resize(original,(crf_shape[1],crf_shape[2])) assert crf_color.shape[0]==crf_map.shape[1] and crf_color.shape[1]==crf_map.shape[2] # step 5. dense crf #lcrf=densecrf_matclass.general_densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params) lcrf=densecrf_matclass.densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params) labels_crf=lcrf.map(crf_params) # step 6. visualize with color labels result=labels_to_color(labels_crf) if os.path.exists(config['output']) and os.path.isdir(config['output']): opath=os.path.join(config['output'],os.path.splitext(os.path.split(ipath)[1])[0])+'.png' else: opath=config['output'] assert not os.path.exists(opath) imageutils.write(opath,result) print(opath)