def test_fit_predict_with_intermediate_fit_params():
    # tests that Pipeline passes fit_params to intermediate steps
    # when fit_predict is invoked
    pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())])
    pipe.fit_predict(
        X=None, y=None, transf__should_get_this=True, clf__should_succeed=True)
    assert pipe.named_steps['transf'].fit_params['should_get_this']
    assert pipe.named_steps['clf'].successful
    assert 'should_succeed' not in pipe.named_steps['transf'].fit_params
def test_fit_predict_with_intermediate_fit_params():
    # tests that Pipeline passes fit_params to intermediate steps
    # when fit_predict is invoked
    pipe = Pipeline([("transf", TransfFitParams()), ("clf", FitParamT())])
    pipe.fit_predict(
        X=None, y=None, transf__should_get_this=True, clf__should_succeed=True
    )
    assert pipe.named_steps["transf"].fit_params["should_get_this"]
    assert pipe.named_steps["clf"].successful
    assert "should_succeed" not in pipe.named_steps["transf"].fit_params
Exemplo n.º 3
0
def test_fit_predict_with_intermediate_fit_params():
    # tests that Pipeline passes fit_params to intermediate steps
    # when fit_predict is invoked
    pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())])
    pipe.fit_predict(X=None,
                     y=None,
                     transf__should_get_this=True,
                     clf__should_succeed=True)
    assert pipe.named_steps['transf'].fit_params['should_get_this']
    assert pipe.named_steps['clf'].successful
    assert 'should_succeed' not in pipe.named_steps['transf'].fit_params
Exemplo n.º 4
0
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([('scaler', scaler), ('Kmeans', km)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_allclose(pipeline_pred, separate_pred, rtol=R_TOL)
Exemplo n.º 5
0
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([('scaler', scaler), ('Kmeans', km)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)
    # As pipeline doesn't clone estimators on construction,
    # it must have its own estimators
    scaler_for_pipeline = StandardScaler()
    km_for_pipeline = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([("scaler", scaler_for_pipeline), ("Kmeans", km_for_pipeline)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)