def track_edge(im,start=None): edge = np.zeros(im.shape) im2 = pad_image(im) chain = [] dir = 6 # if it exists, find first 'on' point in image # row,col point encoding try: on = np.nonzero(im2) i,j =on[0][0],on[1][0] chain = [i-1,j-1] p0 = (i,j) point = np.array(p0) except: print 'No figure found' return edge, np.array(chain) # unless a start point is specified, use the first 'on' point as the start if start!=None: p0 = start point = np.array(p0) iter = 0 # loop until break or too many iterations reached while True: iter+=1 if iter >= len(im2.flatten()): print '***track_edge: max iterations reached with no end in sight...' break # set next direction to look, 1 step counterclockwise from where we came checkdir = (dir+7) % 8 i,j = point + map8[checkdir] # if we hit a pixel in the region, move there and add the direction to the list if im2[i,j]==1: dir = checkdir point = point+map8[checkdir] edge[i-1,j-1]=1 chain.append(dir) # if we've hit the start, then end the loop if (i,j) == p0: break # otherwise, check the next dir else: dir+=1 return edge,np.array(chain)
def label_components(im): # initially pad label image so that we can the first row without error l_im = pad_image(np.zeros(im.shape)) equiv = {0:0.0} # raster through image for i in range(im.shape[0]): for j in range(im.shape[1]): if im[i,j]==1: # find if any neighbors have already been labeled # if so, then take the smalles of all neighboring labels # otherwise, create a new label nearby = [] for dir in [1,2,3,4]: dirval = l_im[i+map8[dir][0]+1,j+map8[dir][1]+1] if dirval > 0: nearby.append(dirval) if nearby==[]: newval = max(equiv)+1 nearby.append(newval) else: newval = min(nearby) l_im[i+1,j+1] = newval # adjust equivalence table, but maintain previous corrections to the table for n in nearby: if n in equiv: equiv[n] = min(newval,equiv[n]) else: equiv[n] = newval # adjust image according to equivalence table # go backwards through the keys so that chains of equivalences are handled properly for key in equiv.keys()[::-1]: l_im[l_im==key] = equiv[key] return l_im[1:-1,1:-1],equiv # return without padding return l_im[1:-1,1:-1],equiv # return without padding