Exemplo n.º 1
0
def test_radial_profile_background():
    """Test the radial profile function
    With background subtraction
    Cummulative pixels """
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    xx, yy = np.meshgrid(np.arange(25), np.arange(25))
    x0, y0 = np.where(data.array == data.array.max())

    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)
    rad_in = rad_in.ravel()
    flux_in = data.array.ravel()

    order = np.argsort(rad_in)
    rad_in = rad_in[order]
    flux_in = flux_in[order]

    plots = Imexamine()
    plots.set_data(data.array)
    # check the binned results
    plots.radial_profile_pars['pixels'][0] = False
    plots.radial_profile_pars['background'][0] = True
    rad_out, flux_out = plots.radial_profile(x0, y0, genplot=False)

    good = np.where(rad_in <= np.max(rad_out))
    rad_in = rad_in[good]
    flux_in = flux_in[good]

    flux_in = np.bincount(rad_in.astype(np.int), flux_in)

    assert_array_equal(np.arange(flux_in.size), rad_out)
    assert_allclose(flux_in - flux_out, flux_out * 0, atol=1e-5)
Exemplo n.º 2
0
def test_radial_profile_background():
    """Test the radial profile function with background subtraction"""
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    plots = Imexamine()
    plots.set_data(data.array)
    # check the binned results
    plots.radial_profile_pars['pixels'][0] = False
    plots.radial_profile_pars['background'][0] = True
    x, y = plots.radial_profile(12, 12, genplot=False)

    rad = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    flux = [4.535423e-02, 3.007037e-01, 3.548898e-01, 1.958061e-01,
            7.566620e-02, 2.469763e-02, 2.540733e-03, 1.518025e-04,
            1.083221e-06, 3.605551e-10]

    assert_array_equal(rad, x)
    assert_allclose(flux, y, 1e-6)
Exemplo n.º 3
0
def test_radial_profile_background():
    """Test the radial profile function with background subtraction"""
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    plots = Imexamine()
    plots.set_data(data.array)
    # check the binned results
    plots.radial_profile_pars['pixels'][0] = False
    plots.radial_profile_pars['background'][0] = True
    x, y = plots.radial_profile(12, 12, genplot=False)

    rad = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    flux = [4.535423e-02, 3.007037e-01, 3.548898e-01, 1.958061e-01,
            7.566620e-02, 2.469763e-02, 2.540733e-03, 1.518025e-04,
            1.083221e-06, 3.605551e-10]

    assert_array_equal(rad, x)
    assert_allclose(flux, y, 1e-6)
Exemplo n.º 4
0
def test_radial_profile_cumulative():
    """Test the radial profile function
    without background subtraction
    with each pixel integer binned
    """
    from astropy.convolution import Gaussian2DKernel
    ksize = 25
    data = Gaussian2DKernel(1.5, x_size=ksize, y_size=ksize)
    xx, yy = np.meshgrid(np.arange(ksize), np.arange(ksize))
    x0, y0 = np.where(data.array == data.array.max())
    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)

    rad_in = rad_in.ravel()
    flux_in = data.array.ravel()

    indices = np.argsort(rad_in)
    rad_in = rad_in[indices]
    flux_in = flux_in[indices]

    # now bin the radflux like we expect
    rad_in = rad_in.astype(np.int)
    flux_in = np.bincount(rad_in, flux_in) / np.bincount(rad_in)
    rad_in = np.arange(len(flux_in))
    assert (data.array[x0, y0] == flux_in[0])

    # check the binned results
    plots = Imexamine()
    plots.set_data(data.array)
    plots.radial_profile_pars['pixels'][0] = False
    plots.radial_profile_pars['background'][0] = False
    plots.radial_profile_pars['clip'][0] = False
    rad_out, flux_out = plots.radial_profile(x0, y0, genplot=False)

    # The default measurement size is not equal
    assert (len(rad_in) >= len(rad_out))
    good = [rad_in[i] for i in rad_out if rad_out[i] == rad_in[i]]

    assert_array_equal(rad_in[good], rad_out[good])
    assert_allclose(flux_in[good], flux_out[good], atol=1e-7)
Exemplo n.º 5
0
def test_radial_profile_pixels():
    """Test the radial profile function
    without background subtraction
    with each pixel unsummed
    """
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    xx, yy = np.meshgrid(np.arange(25), np.arange(25))
    x0, y0 = np.where(data.array == data.array.max())

    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)

    # It's going to crop things down apparently.
    plots = Imexamine()
    datasize = int(plots.radial_profile_pars["rplot"][0])
    icentery = 12
    icenterx = 12
    rad_in = rad_in[icentery - datasize:icentery + datasize,
                    icenterx - datasize:icenterx + datasize]
    flux_in = data.array[icentery - datasize:icentery + datasize,
                         icenterx - datasize:icenterx + datasize]

    rad_in = rad_in.ravel()
    flux_in = flux_in.ravel()

    order = np.argsort(rad_in)
    rad_in = rad_in[order]
    flux_in = flux_in[order]

    plots.set_data(data.array)
    # check the unbinned results
    plots.radial_profile_pars['pixels'][0] = True
    out_radius, out_flux = plots.radial_profile(x0, y0, genplot=False)
    good = np.where(rad_in <= np.max(out_radius))
    rad_in = rad_in[good]
    flux_in = flux_in[good]

    assert_allclose(rad_in, out_radius, 1e-7)
    assert_allclose(flux_in, out_flux, 1e-7)
Exemplo n.º 6
0
def test_radial_profile_cumulative():
    """Test the radial profile function
    without background subtraction
    with each pixel integer binned
    """
    from astropy.convolution import Gaussian2DKernel
    ksize = 25
    data = Gaussian2DKernel(1.5, x_size=ksize, y_size=ksize)
    xx, yy = np.meshgrid(np.arange(ksize), np.arange(ksize))
    x0, y0 = np.where(data.array == data.array.max())
    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)

    rad_in = rad_in.ravel()
    flux_in = data.array.ravel()

    indices = np.argsort(rad_in)
    rad_in = rad_in[indices]
    flux_in = flux_in[indices]

    # now bin the radflux like we expect
    rad_in = rad_in.astype(np.int)
    flux_in = np.bincount(rad_in, flux_in) / np.bincount(rad_in)
    rad_in = np.arange(len(flux_in))
    assert (data.array[x0, y0] == flux_in[0])

    # check the binned results
    plots = Imexamine()
    plots.set_data(data.array)
    plots.radial_profile_pars['pixels'][0] = False
    plots.radial_profile_pars['background'][0] = False
    plots.radial_profile_pars['clip'][0] = False
    rad_out, flux_out = plots.radial_profile(x0, y0, genplot=False)

    # The default measurement size is not equal
    assert (len(rad_in) >= len(rad_out))
    good = [rad_in[i] for i in rad_out if rad_out[i] == rad_in[i]]

    assert_array_equal(rad_in[good], rad_out[good])
    assert_allclose(flux_in[good], flux_out[good], atol=1e-7)
Exemplo n.º 7
0
def test_radial_profile():
    """Test the radial profile function
    No background subtraction
    individual pixel results used
    """
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    xx, yy = np.meshgrid(np.arange(25), np.arange(25))
    x0, y0 = np.where(data.array == data.array.max())

    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)
    rad_in = rad_in.ravel()
    flux_in = data.array.ravel()

    order = np.argsort(rad_in)
    rad_in = rad_in[order]
    flux_in = flux_in[order]

    plots = Imexamine()
    plots.set_data(data.array)

    plots.radial_profile_pars['pixels'][0] = True
    plots.radial_profile_pars['background'][0] = False
    plots.radial_profile_pars['clip'][0] = False
    rad_out, flux_out = plots.radial_profile(x0, y0, genplot=False)

    order2 = np.argsort(rad_out)
    rad_out = rad_out[order2]
    flux_out = flux_out[order2]

    # the radial profile is done on a smaller cutout by default
    # and may have a fractional center radius calculation. This
    # looks at the first few hundred data points in both arrays
    assert (len(rad_out) < len(rad_in))
    good = 150
    assert_allclose(rad_in[:good], rad_out[:good], atol=1e-14)
    assert_allclose(flux_in[:good], flux_out[:good], atol=1e-14)
Exemplo n.º 8
0
def test_radial_profile():
    """Test the radial profile function
    No background subtraction
    individual pixel results used
    """
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    xx, yy = np.meshgrid(np.arange(25), np.arange(25))
    x0, y0 = np.where(data.array == data.array.max())

    rad_in = np.sqrt((xx - x0)**2 + (yy - y0)**2)
    rad_in = rad_in.ravel()
    flux_in = data.array.ravel()

    order = np.argsort(rad_in)
    rad_in = rad_in[order]
    flux_in = flux_in[order]

    plots = Imexamine()
    plots.set_data(data.array)

    plots.radial_profile_pars['pixels'][0] = True
    plots.radial_profile_pars['background'][0] = False
    plots.radial_profile_pars['clip'][0] = False
    rad_out, flux_out = plots.radial_profile(x0, y0, genplot=False)

    order2 = np.argsort(rad_out)
    rad_out = rad_out[order2]
    flux_out = flux_out[order2]

    # the radial profile is done on a smaller cutout by default
    # and may have a fractional center radius calculation. This
    # looks at the first few hundred data points in both arrays
    assert (len(rad_out) < len(rad_in))
    good = 150
    assert_allclose(rad_in[:good], rad_out[:good], atol=1e-14)
    assert_allclose(flux_in[:good], flux_out[:good], atol=1e-14)
Exemplo n.º 9
0
def test_radial_profile_pixels():
    """Test the radial profile function without background subtraction"""
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    plots = Imexamine()
    plots.set_data(data.array)
    # check the unbinned results
    plots.radial_profile_pars['pixels'][0] = True
    x, y = plots.radial_profile(12, 12, genplot=False)

    rad = [1.00485917e-14,   1.00000000e+00,   1.00000000e+00,
           1.00000000e+00,   1.00000000e+00,   1.41421356e+00,
           1.41421356e+00,   1.41421356e+00,   1.41421356e+00,
           2.00000000e+00,   2.00000000e+00,   2.00000000e+00,
           2.00000000e+00,   2.23606798e+00,   2.23606798e+00,
           2.23606798e+00,   2.23606798e+00,   2.23606798e+00,
           2.23606798e+00,   2.23606798e+00,   2.23606798e+00,
           2.82842712e+00,   2.82842712e+00,   2.82842712e+00,
           2.82842712e+00,   3.00000000e+00,   3.00000000e+00,
           3.00000000e+00,   3.00000000e+00,   3.16227766e+00,
           3.16227766e+00,   3.16227766e+00,   3.16227766e+00,
           3.16227766e+00,   3.16227766e+00,   3.16227766e+00,
           3.16227766e+00,   3.60555128e+00,   3.60555128e+00,
           3.60555128e+00,   3.60555128e+00,   3.60555128e+00,
           3.60555128e+00,   3.60555128e+00,   3.60555128e+00,
           4.00000000e+00,   4.00000000e+00,   4.00000000e+00,
           4.00000000e+00,   4.12310563e+00,   4.12310563e+00,
           4.12310563e+00,   4.12310563e+00,   4.12310563e+00,
           4.12310563e+00,   4.12310563e+00,   4.12310563e+00,
           4.24264069e+00,   4.24264069e+00,   4.24264069e+00,
           4.24264069e+00,   4.47213595e+00,   4.47213595e+00,
           4.47213595e+00,   4.47213595e+00,   4.47213595e+00,
           4.47213595e+00,   4.47213595e+00,   4.47213595e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.09901951e+00,   5.09901951e+00,   5.09901951e+00,
           5.09901951e+00,   5.09901951e+00,   5.09901951e+00,
           5.09901951e+00,   5.09901951e+00,   5.38516481e+00,
           5.38516481e+00,   5.38516481e+00,   5.38516481e+00,
           5.38516481e+00,   5.38516481e+00,   5.38516481e+00,
           5.38516481e+00,   5.65685425e+00,   5.65685425e+00,
           5.65685425e+00,   5.65685425e+00,   5.83095189e+00,
           5.83095189e+00,   5.83095189e+00,   5.83095189e+00,
           5.83095189e+00,   5.83095189e+00,   5.83095189e+00,
           5.83095189e+00,   6.00000000e+00,   6.00000000e+00,
           6.00000000e+00,   6.00000000e+00,   6.08276253e+00,
           6.08276253e+00,   6.08276253e+00,   6.08276253e+00,
           6.08276253e+00,   6.08276253e+00,   6.08276253e+00,
           6.08276253e+00,   6.32455532e+00,   6.32455532e+00,
           6.32455532e+00,   6.32455532e+00,   6.32455532e+00,
           6.32455532e+00,   6.32455532e+00,   6.32455532e+00,
           6.40312424e+00,   6.40312424e+00,   6.40312424e+00,
           6.40312424e+00,   6.40312424e+00,   6.40312424e+00,
           6.40312424e+00,   6.40312424e+00,   6.70820393e+00,
           6.70820393e+00,   6.70820393e+00,   6.70820393e+00,
           6.70820393e+00,   6.70820393e+00,   6.70820393e+00,
           6.70820393e+00,   7.00000000e+00,   7.00000000e+00,
           7.07106781e+00,   7.07106781e+00,   7.07106781e+00,
           7.07106781e+00,   7.07106781e+00,   7.07106781e+00,
           7.07106781e+00,   7.07106781e+00,   7.21110255e+00,
           7.21110255e+00,   7.21110255e+00,   7.21110255e+00,
           7.21110255e+00,   7.21110255e+00,   7.21110255e+00,
           7.21110255e+00,   7.28010989e+00,   7.28010989e+00,
           7.28010989e+00,   7.28010989e+00,   7.61577311e+00,
           7.61577311e+00,   7.61577311e+00,   7.61577311e+00,
           7.81024968e+00,   7.81024968e+00,   7.81024968e+00,
           7.81024968e+00,   7.81024968e+00,   7.81024968e+00,
           7.81024968e+00,   7.81024968e+00,   8.06225775e+00,
           8.06225775e+00,   8.06225775e+00,   8.06225775e+00,
           8.48528137e+00,   8.48528137e+00,   8.48528137e+00,
           8.48528137e+00,   8.60232527e+00,   8.60232527e+00,
           8.60232527e+00,   8.60232527e+00,   9.21954446e+00,
           9.21954446e+00,   9.21954446e+00,   9.21954446e+00,
           9.89949494e+00]

    flux = [1.19552465e-02,   2.32856406e-02,   2.32856406e-02,
            3.93558331e-03,   3.93558331e-03,   4.53542348e-02,
            7.66546959e-03,   7.66546959e-03,   1.29556643e-03,
            2.90802459e-02,   2.90802459e-02,   8.30691786e-04,
            8.30691786e-04,   5.66405848e-02,   5.66405848e-02,
            9.57301302e-03,   9.57301302e-03,   1.61796667e-03,
            1.61796667e-03,   2.73457911e-04,   2.73457911e-04,
            7.07355303e-02,   2.02059585e-03,   2.02059585e-03,
            5.77193322e-05,   2.32856406e-02,   2.32856406e-02,
            1.12421908e-04,   1.12421908e-04,   4.53542348e-02,
            4.53542348e-02,   7.66546959e-03,   7.66546959e-03,
            2.18967977e-04,   2.18967977e-04,   3.70085038e-05,
            3.70085038e-05,   5.66405848e-02,   5.66405848e-02,
            1.61796667e-03,   1.61796667e-03,   2.73457911e-04,
            2.73457911e-04,   7.81146217e-06,   7.81146217e-06,
            1.19552465e-02,   1.19552465e-02,   9.75533570e-06,
            9.75533570e-06,   2.32856406e-02,   2.32856406e-02,
            3.93558331e-03,   3.93558331e-03,   1.90007994e-05,
            1.90007994e-05,   3.21138811e-06,   3.21138811e-06,
            4.53542348e-02,   2.18967977e-04,   2.18967977e-04,
            1.05716645e-06,   2.90802459e-02,   2.90802459e-02,
            8.30691786e-04,   8.30691786e-04,   2.37291269e-05,
            2.37291269e-05,   6.77834392e-07,   6.77834392e-07,
            2.32856406e-02,   2.32856406e-02,   3.93558331e-03,
            3.93558331e-03,   1.12421908e-04,   1.12421908e-04,
            1.90007994e-05,   1.90007994e-05,   5.42767351e-07,
            5.42767351e-07,   9.17349095e-08,   9.17349095e-08,
            7.66546959e-03,   7.66546959e-03,   1.29556643e-03,
            1.29556643e-03,   1.05716645e-06,   1.05716645e-06,
            1.78675206e-07,   1.78675206e-07,   9.57301302e-03,
            9.57301302e-03,   2.73457911e-04,   2.73457911e-04,
            1.32024112e-06,   1.32024112e-06,   3.77133487e-08,
            3.77133487e-08,   1.19552465e-02,   9.75533570e-06,
            9.75533570e-06,   7.96023526e-09,   7.66546959e-03,
            7.66546959e-03,   3.70085038e-05,   3.70085038e-05,
            1.05716645e-06,   1.05716645e-06,   5.10394673e-09,
            5.10394673e-09,   8.30691786e-04,   8.30691786e-04,
            1.93626789e-08,   1.93626789e-08,   1.61796667e-03,
            1.61796667e-03,   2.73457911e-04,   2.73457911e-04,
            3.77133487e-08,   3.77133487e-08,   6.37405811e-09,
            6.37405811e-09,   2.02059585e-03,   2.02059585e-03,
            5.77193322e-05,   5.77193322e-05,   4.70982729e-08,
            4.70982729e-08,   1.34538575e-09,   1.34538575e-09,
            3.93558331e-03,   3.93558331e-03,   3.21138811e-06,
            3.21138811e-06,   5.42767351e-07,   5.42767351e-07,
            4.42891556e-10,   4.42891556e-10,   1.61796667e-03,
            1.61796667e-03,   7.81146217e-06,   7.81146217e-06,
            3.77133487e-08,   3.77133487e-08,   1.82078162e-10,
            1.82078162e-10,   1.12421908e-04,   1.12421908e-04,
            1.29556643e-03,   2.18967977e-04,   2.18967977e-04,
            3.70085038e-05,   3.70085038e-05,   1.78675206e-07,
            1.78675206e-07,   2.46415996e-11,   8.30691786e-04,
            8.30691786e-04,   6.77834392e-07,   6.77834392e-07,
            1.93626789e-08,   1.93626789e-08,   1.57997104e-11,
            1.57997104e-11,   2.73457911e-04,   2.73457911e-04,
            7.81146217e-06,   7.81146217e-06,   2.18967977e-04,
            2.18967977e-04,   1.05716645e-06,   1.05716645e-06,
            2.73457911e-04,   2.73457911e-04,   3.77133487e-08,
            3.77133487e-08,   6.37405811e-09,   6.37405811e-09,
            8.79064260e-13,   8.79064260e-13,   1.12421908e-04,
            1.12421908e-04,   9.17349095e-08,   9.17349095e-08,
            5.77193322e-05,   1.34538575e-09,   1.34538575e-09,
            3.13597326e-14,   3.70085038e-05,   3.70085038e-05,
            5.10394673e-09,   5.10394673e-09,   7.81146217e-06,
            7.81146217e-06,   1.82078162e-10,   1.82078162e-10,
            1.05716645e-06]

    assert_allclose(rad, x, 1e-7)
    assert_allclose(flux, y, 1e-7)
Exemplo n.º 10
0
def test_radial_profile_pixels():
    """Test the radial profile function without background subtraction"""
    from astropy.convolution import Gaussian2DKernel
    data = Gaussian2DKernel(1.5, x_size=25, y_size=25)
    plots = Imexamine()
    plots.set_data(data.array)
    # check the unbinned results
    plots.radial_profile_pars['pixels'][0] = True
    x, y = plots.radial_profile(12, 12, genplot=False)

    rad = [1.00485917e-14,   1.00000000e+00,   1.00000000e+00,
           1.00000000e+00,   1.00000000e+00,   1.41421356e+00,
           1.41421356e+00,   1.41421356e+00,   1.41421356e+00,
           2.00000000e+00,   2.00000000e+00,   2.00000000e+00,
           2.00000000e+00,   2.23606798e+00,   2.23606798e+00,
           2.23606798e+00,   2.23606798e+00,   2.23606798e+00,
           2.23606798e+00,   2.23606798e+00,   2.23606798e+00,
           2.82842712e+00,   2.82842712e+00,   2.82842712e+00,
           2.82842712e+00,   3.00000000e+00,   3.00000000e+00,
           3.00000000e+00,   3.00000000e+00,   3.16227766e+00,
           3.16227766e+00,   3.16227766e+00,   3.16227766e+00,
           3.16227766e+00,   3.16227766e+00,   3.16227766e+00,
           3.16227766e+00,   3.60555128e+00,   3.60555128e+00,
           3.60555128e+00,   3.60555128e+00,   3.60555128e+00,
           3.60555128e+00,   3.60555128e+00,   3.60555128e+00,
           4.00000000e+00,   4.00000000e+00,   4.00000000e+00,
           4.00000000e+00,   4.12310563e+00,   4.12310563e+00,
           4.12310563e+00,   4.12310563e+00,   4.12310563e+00,
           4.12310563e+00,   4.12310563e+00,   4.12310563e+00,
           4.24264069e+00,   4.24264069e+00,   4.24264069e+00,
           4.24264069e+00,   4.47213595e+00,   4.47213595e+00,
           4.47213595e+00,   4.47213595e+00,   4.47213595e+00,
           4.47213595e+00,   4.47213595e+00,   4.47213595e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.00000000e+00,   5.00000000e+00,   5.00000000e+00,
           5.09901951e+00,   5.09901951e+00,   5.09901951e+00,
           5.09901951e+00,   5.09901951e+00,   5.09901951e+00,
           5.09901951e+00,   5.09901951e+00,   5.38516481e+00,
           5.38516481e+00,   5.38516481e+00,   5.38516481e+00,
           5.38516481e+00,   5.38516481e+00,   5.38516481e+00,
           5.38516481e+00,   5.65685425e+00,   5.65685425e+00,
           5.65685425e+00,   5.65685425e+00,   5.83095189e+00,
           5.83095189e+00,   5.83095189e+00,   5.83095189e+00,
           5.83095189e+00,   5.83095189e+00,   5.83095189e+00,
           5.83095189e+00,   6.00000000e+00,   6.00000000e+00,
           6.00000000e+00,   6.00000000e+00,   6.08276253e+00,
           6.08276253e+00,   6.08276253e+00,   6.08276253e+00,
           6.08276253e+00,   6.08276253e+00,   6.08276253e+00,
           6.08276253e+00,   6.32455532e+00,   6.32455532e+00,
           6.32455532e+00,   6.32455532e+00,   6.32455532e+00,
           6.32455532e+00,   6.32455532e+00,   6.32455532e+00,
           6.40312424e+00,   6.40312424e+00,   6.40312424e+00,
           6.40312424e+00,   6.40312424e+00,   6.40312424e+00,
           6.40312424e+00,   6.40312424e+00,   6.70820393e+00,
           6.70820393e+00,   6.70820393e+00,   6.70820393e+00,
           6.70820393e+00,   6.70820393e+00,   6.70820393e+00,
           6.70820393e+00,   7.00000000e+00,   7.00000000e+00,
           7.07106781e+00,   7.07106781e+00,   7.07106781e+00,
           7.07106781e+00,   7.07106781e+00,   7.07106781e+00,
           7.07106781e+00,   7.07106781e+00,   7.21110255e+00,
           7.21110255e+00,   7.21110255e+00,   7.21110255e+00,
           7.21110255e+00,   7.21110255e+00,   7.21110255e+00,
           7.21110255e+00,   7.28010989e+00,   7.28010989e+00,
           7.28010989e+00,   7.28010989e+00,   7.61577311e+00,
           7.61577311e+00,   7.61577311e+00,   7.61577311e+00,
           7.81024968e+00,   7.81024968e+00,   7.81024968e+00,
           7.81024968e+00,   7.81024968e+00,   7.81024968e+00,
           7.81024968e+00,   7.81024968e+00,   8.06225775e+00,
           8.06225775e+00,   8.06225775e+00,   8.06225775e+00,
           8.48528137e+00,   8.48528137e+00,   8.48528137e+00,
           8.48528137e+00,   8.60232527e+00,   8.60232527e+00,
           8.60232527e+00,   8.60232527e+00,   9.21954446e+00,
           9.21954446e+00,   9.21954446e+00,   9.21954446e+00,
           9.89949494e+00]

    flux = [1.19552465e-02,   2.32856406e-02,   2.32856406e-02,
            3.93558331e-03,   3.93558331e-03,   4.53542348e-02,
            7.66546959e-03,   7.66546959e-03,   1.29556643e-03,
            2.90802459e-02,   2.90802459e-02,   8.30691786e-04,
            8.30691786e-04,   5.66405848e-02,   5.66405848e-02,
            9.57301302e-03,   9.57301302e-03,   1.61796667e-03,
            1.61796667e-03,   2.73457911e-04,   2.73457911e-04,
            7.07355303e-02,   2.02059585e-03,   2.02059585e-03,
            5.77193322e-05,   2.32856406e-02,   2.32856406e-02,
            1.12421908e-04,   1.12421908e-04,   4.53542348e-02,
            4.53542348e-02,   7.66546959e-03,   7.66546959e-03,
            2.18967977e-04,   2.18967977e-04,   3.70085038e-05,
            3.70085038e-05,   5.66405848e-02,   5.66405848e-02,
            1.61796667e-03,   1.61796667e-03,   2.73457911e-04,
            2.73457911e-04,   7.81146217e-06,   7.81146217e-06,
            1.19552465e-02,   1.19552465e-02,   9.75533570e-06,
            9.75533570e-06,   2.32856406e-02,   2.32856406e-02,
            3.93558331e-03,   3.93558331e-03,   1.90007994e-05,
            1.90007994e-05,   3.21138811e-06,   3.21138811e-06,
            4.53542348e-02,   2.18967977e-04,   2.18967977e-04,
            1.05716645e-06,   2.90802459e-02,   2.90802459e-02,
            8.30691786e-04,   8.30691786e-04,   2.37291269e-05,
            2.37291269e-05,   6.77834392e-07,   6.77834392e-07,
            2.32856406e-02,   2.32856406e-02,   3.93558331e-03,
            3.93558331e-03,   1.12421908e-04,   1.12421908e-04,
            1.90007994e-05,   1.90007994e-05,   5.42767351e-07,
            5.42767351e-07,   9.17349095e-08,   9.17349095e-08,
            7.66546959e-03,   7.66546959e-03,   1.29556643e-03,
            1.29556643e-03,   1.05716645e-06,   1.05716645e-06,
            1.78675206e-07,   1.78675206e-07,   9.57301302e-03,
            9.57301302e-03,   2.73457911e-04,   2.73457911e-04,
            1.32024112e-06,   1.32024112e-06,   3.77133487e-08,
            3.77133487e-08,   1.19552465e-02,   9.75533570e-06,
            9.75533570e-06,   7.96023526e-09,   7.66546959e-03,
            7.66546959e-03,   3.70085038e-05,   3.70085038e-05,
            1.05716645e-06,   1.05716645e-06,   5.10394673e-09,
            5.10394673e-09,   8.30691786e-04,   8.30691786e-04,
            1.93626789e-08,   1.93626789e-08,   1.61796667e-03,
            1.61796667e-03,   2.73457911e-04,   2.73457911e-04,
            3.77133487e-08,   3.77133487e-08,   6.37405811e-09,
            6.37405811e-09,   2.02059585e-03,   2.02059585e-03,
            5.77193322e-05,   5.77193322e-05,   4.70982729e-08,
            4.70982729e-08,   1.34538575e-09,   1.34538575e-09,
            3.93558331e-03,   3.93558331e-03,   3.21138811e-06,
            3.21138811e-06,   5.42767351e-07,   5.42767351e-07,
            4.42891556e-10,   4.42891556e-10,   1.61796667e-03,
            1.61796667e-03,   7.81146217e-06,   7.81146217e-06,
            3.77133487e-08,   3.77133487e-08,   1.82078162e-10,
            1.82078162e-10,   1.12421908e-04,   1.12421908e-04,
            1.29556643e-03,   2.18967977e-04,   2.18967977e-04,
            3.70085038e-05,   3.70085038e-05,   1.78675206e-07,
            1.78675206e-07,   2.46415996e-11,   8.30691786e-04,
            8.30691786e-04,   6.77834392e-07,   6.77834392e-07,
            1.93626789e-08,   1.93626789e-08,   1.57997104e-11,
            1.57997104e-11,   2.73457911e-04,   2.73457911e-04,
            7.81146217e-06,   7.81146217e-06,   2.18967977e-04,
            2.18967977e-04,   1.05716645e-06,   1.05716645e-06,
            2.73457911e-04,   2.73457911e-04,   3.77133487e-08,
            3.77133487e-08,   6.37405811e-09,   6.37405811e-09,
            8.79064260e-13,   8.79064260e-13,   1.12421908e-04,
            1.12421908e-04,   9.17349095e-08,   9.17349095e-08,
            5.77193322e-05,   1.34538575e-09,   1.34538575e-09,
            3.13597326e-14,   3.70085038e-05,   3.70085038e-05,
            5.10394673e-09,   5.10394673e-09,   7.81146217e-06,
            7.81146217e-06,   1.82078162e-10,   1.82078162e-10,
            1.05716645e-06]

    assert_allclose(rad, x, 1e-7)
    assert_allclose(flux, y, 1e-7)