Exemplo n.º 1
0
 def apply(self, frames):
     registrators = opflowreg.RegistrationInterfaces
     if self.reg_type == 'template':
         tstart = len(frames)/2
         tstop = min(len(frames),tstart+50)
         template = np.max(frames[tstart:tstop],axis=0)
         def register_stack(stack, registrator):
             return opflowreg.register_stack_to_template(stack,template,registrator, njobs=self.n_cpu)
     elif self.reg_type == 'recursive':
         def register_stack(stack, registrator):
             return opflowreg.register_stack_recursive(stack,registrator)[1]
     else:
         raise NameError("Unknown registration type")
     # TODO: below is just crazy. has to be made neat later
     reg_dispatcher = {'affine':registrators.affine,
                       'homograhy':registrators.homography,
                       'shifts':registrators.shifts,
                       'Greenberg-Kerr':registrators.greenberg_kerr,
                       'softmesh':registrators.softmesh}
     operations = self.reg_pipeline.split('->')
     newframes = frames
     warp_history = []
     for movement_model in operations:
         warps = register_stack(newframes, reg_dispatcher[movement_model])
         warp_history.append(warps)
         newframes = opflowreg.apply_warps(warps, newframes, njobs=self.n_cpu)
     final_warps = [lib.flcompose(*warpchain) for warpchain in zip(*warp_history)]
     if self.save_recipe_to:
         opflowreg.save_recipe(final_warps, self.save_recipe_to)
         print 'saved motions stab recipe to %s'%self.save_recipe_to
     return newframes
Exemplo n.º 2
0
 def apply(self, frames):
     registrators = opflowreg.RegistrationInterfaces
     if self.reg_type == 'template':
         tstart = len(frames)/2
         tstop = min(len(frames),tstart+50)
         template = np.max(frames[tstart:tstop],axis=0)
         def register_stack(stack, registrator):
             return opflowreg.register_stack_to_template(stack,template,registrator, njobs=self.n_cpu)
     elif self.reg_type == 'recursive':
         def register_stack(stack, registrator):
             return opflowreg.register_stack_recursive(stack,registrator)[1]
     else:
         raise NameError("Unknown registration type")
     # TODO: below is just crazy. has to be made neat later
     reg_dispatcher = {'affine':registrators.affine,
                       'homograhy':registrators.homography,
                       'shifts':registrators.shifts,
                       'Greenberg-Kerr':registrators.greenberg_kerr,
                       'softmesh':registrators.softmesh}
     operations = self.reg_pipeline.split('->')
     newframes = frames
     warp_history = []
     for movement_model in operations:
         warps = register_stack(newframes, reg_dispatcher[movement_model])
         warp_history.append(warps)
         newframes = opflowreg.apply_warps(warps, newframes, njobs=self.n_cpu)
     final_warps = [lib.flcompose(*warpchain) for warpchain in zip(*warp_history)]
     if self.save_recipe_to:
         opflowreg.save_recipe(final_warps, self.save_recipe_to)
         print 'saved motions stab recipe to %s'%self.save_recipe_to
     return newframes
Exemplo n.º 3
0
    def frames(self,):
	"""
	Return iterator over frames.

	The composition of functions in `self.fns`
	list is applied to each frame. By default, this list is empty. Examples
	of function "hooks" to put into `self.fns` are ``imfun.lib.DFoSD``,
	``imfun.lib.DFoF`` or functions from ``scipy.ndimage``.
	"""
	
        fn = lib.flcompose(identity, *self.fns)
        return itt.imap(fn,self.mlfimg.flux_frame_iter())
Exemplo n.º 4
0
def register_stack_recursive(frames, regfn):
    """
    Given stack of frames, 
    align frames recursively and return a mean frame of the aligned stack and
    a list of functions, each of which takes an image and return warped image, 
    aligned to this mean frame.
    """
    #import sys
    #sys.setrecursionlimit(len(frames))
    L = len(frames)
    if L < 2:
        return frames[0], [lambda f:f]
    else:
        mf_l, warps_left = register_stack_recursive(frames[:L/2], regfn)
        mf_r, warps_right = register_stack_recursive(frames[L/2:], regfn)
        fn = regfn(mf_l, mf_r)
        fm = 0.5*(parametric_warp(mf_l,fn) + mf_r)
        return fm, [lib.flcompose(fx,fn) for fx in warps_left] + warps_right
 def apply_reg(frames):
     if args.type == 'template':
         if args.verbose > 1:
             print 'stabilization type is template'
         tstart = len(frames)/2
         tstop = min(len(frames),tstart+50)
         template = np.max(frames[tstart:tstop],axis=0)
         def register_stack(stack, registrator, **fnargs):
             return opflowreg.register_stack_to_template(stack,template,registrator,njobs=args.ncpu,**fnargs)
     elif args.type == 'recursive':
         def register_stack(stack, registrator,**fnargs):
             return opflowreg.register_stack_recursive(stack,registrator,**fnargs)[1]
     else:
         raise NameError("Unknown registration type")
     # TODO: below is just crazy. has to be made neat later
     reg_dispatcher = {'affine':registrators.affine,
                       'homography':registrators.homography,
                       'shifts':registrators.shifts,
                       'Greenberg-Kerr':registrators.greenberg_kerr,
                       'softmesh':registrators.softmesh}
     operations = args.model
     newframes = frames
     warp_history = []
     for movement_model in operations:
         if not isinstance(movement_model, basestring):
             if len(movement_model)>1:
                 model, model_params = movement_model
             else:
                 model, model_params = movement_model[0],{}
         else:
             model = movement_model
             model_params = {}
         if args.verbose > 1:
             print 'correcting for {} with params: {}'.format(model, model_params)
         warps = register_stack(newframes, reg_dispatcher[model], **model_params)
         warp_history.append(warps)
         newframes = opflowreg.apply_warps(warps, newframes, njobs=args.ncpu)
     final_warps = [lib.flcompose(*warpchain) for warpchain in zip(*warp_history)]
     del newframes
     return final_warps
Exemplo n.º 6
0
    def pipeline(self):
	"""Return the composite function to process frames based on self.fns"""
	return lib.flcompose(identity, *self.fns)
Exemplo n.º 7
0
def find_objects(
        arr,
        k=3,
        level=5,
        noise_std=None,
        coefs=None,
        supp=None,
        dec_fn=atrous.decompose,
        retraw=False,  # return raw, only used for testing
        start_scale=0,
        weights=None,
        deblendp=True,
        min_px_size=200,
        min_nscales=2,
        rec_variant=2,
        modulus=False):
    """Use MVM to find objects in the input array.

    Parameters:
      - `arr`: (`numpy array`) -- 1D, 2D or 3D ``numpy`` array. Input data.
      - `k` : (`number`) -- threshold to regard wavelet coefficient as
        significant, in :math:`\\times \\sigma` (in noise standard deviations)
      - `level`: (`int`) -- level of wavelet transform
      - `noise_std`: (`number` or `None`) -- if known, provide noise
        :math:`\\sigma`
      - `coefs`: if already calculated, provide wavelet coefficients
      - `supp`: if already calculated, provide support of significant wavelet
        coefficients
      - `start_scale`: (`int`) -- start reconstruction at this scale
	(decomposition level)
      - `weights`: (`list` of numbers) -- weight coefficients at different
        levels before reconstruction
      - `min_px_size`: an `MVMNode` should contain at least this number of
        pixels
      - `min_nscales`: an object should have at least this scales/levels
      - `modulus`: if False, only search for light sources
      - retraw : only used for debugging

    Returns:
      a `list` of recovered objects as *embedddings* around non-zero voxels.
      see `embedding` function for details
    
    """
    if np.iterable(k):
        level = len(k)
    if coefs is None:
        coefs = dec_fn(arr, level)
    if noise_std is None:
        noise_std = atrous.estimate_sigma_mad(coefs[0], True)
        ## if arr.ndim > 2:
        ##     noise_std = atrous.estimate_sigma_mad(coefs[0], True)
        ## else:
        ##     noise_std = atrous.estimate_sigma(arr, coefs)
        ## calculate support taking only positive coefficients (light sources)
    sigmaej = atrous.sigmaej
    if dec_fn == mmt.decompose_mwt:
        sigmaej = mmt.sigmaej_mwts2
    if supp is None:
        supp = multiscale.threshold_w(coefs,
                                      np.array(k, _dtype_) * noise_std,
                                      modulus=modulus,
                                      sigmaej=sigmaej)
    if weights is None:
        weights = np.ones(level)
    structures = get_structures(coefs, supp)
    g = connectivity_graph(structures)
    if deblendp:
        gdeblended = deblend_all(g, coefs, min_nscales)  # destructive
    else:
        gdeblended = [r for r in g if nscales(r) >= min_nscales]

    #check = lambda x: len(tree_locations2(x)) > min_px_size
    def check(x):
        return len(tree_locations2(x)) > min_px_size

    objects = sorted([x for x in gdeblended if check(x)],
                     key=lambda u: tree_mass(u),
                     reverse=True)
    if retraw == 1:
        return objects
    if retraw == 2:
        return [supp_from_obj(o, start_scale) for o in objects]
    # note: even if we decompose with mmt.decompose_mwt
    # we use atrous.decompose for object reconstruction because
    # we don't expect too many outliers and this way it's faster
    pipelines = [
        lib.flcompose(lambda x1, x2: supp_from_obj(x1, x2, weights=weights),
                      lambda x: multiscale.simple_rec(coefs, x), embedding),
        lib.flcompose(
            lambda x1, x2: supp_from_obj(x1, x2, weights=weights),
            lambda x: multiscale.simple_rec_iterative(
                coefs, x, positive_only=(not modulus)), embedding)
    ]
    recovered = (pipelines[rec_variant - 1](obj, start_scale)
                 for obj in objects)
    return filter(lambda x: np.sum(x[0] > 0) > min_px_size, recovered)