Exemplo n.º 1
0
    def next_minibatch(self, batch_size):
        '''
        Return the next mini-batch, we do data augmentation during constructing each mini-batch.
        '''
        data_size = len(self.data)
        batch_end = min(self.batch_start + batch_size, data_size)
        current_batch_size = batch_end - self.batch_start
        if current_batch_size < 0:
            raise Exception('Reach the end of the training data.')

        inputs = np.empty(shape=(current_batch_size, 1, self.width,
                                 self.height),
                          dtype=np.float32)
        targets = np.empty(shape=(current_batch_size, self.emotion_count),
                           dtype=np.float32)
        for idx in range(self.batch_start, batch_end):
            index = self.indices[idx]
            distorted_image = imgu.distort_img(self.data[index][1],
                                               self.data[index][3], self.width,
                                               self.height, self.max_shift,
                                               self.max_scale, self.max_angle,
                                               self.max_skew, self.do_flip)
            final_image = imgu.preproc_img(distorted_image)

            inputs[idx - self.batch_start] = final_image
            targets[idx - self.batch_start, :] = self._process_target(
                self.data[index][2])

        self.batch_start += current_batch_size
        return inputs, targets, current_batch_size
Exemplo n.º 2
0
    def next_minibatch(self,
                       batch_size,
                       num_data_partitions=1,
                       partition_index=0):
        '''
        Return the next mini-batch, we do data augmentation during constructing each mini-batch.
        '''
        data_size = len(self.data)
        total_batch_size = batch_size * num_data_partitions
        batch_end = min(self.batch_start + total_batch_size, data_size)
        current_batch_size = batch_end - self.batch_start
        if current_batch_size < 0:
            raise Exception('Reach the end of the training data.')

        #determine individual worker batch size, usually equals batch_size except possibly for last partiton of data,
        #and corresponding worker_batch_start and worker_batch_end indices
        worker_batch_size = current_batch_size // num_data_partitions
        worker_batch_start = self.batch_start + worker_batch_size * partition_index

        if ((partition_index + 1) == num_data_partitions):
            worker_batch_end = batch_end
            worker_batch_size = worker_batch_end - worker_batch_start
        else:
            worker_batch_end = worker_batch_start + worker_batch_size

        inputs = np.empty(shape=(worker_batch_size, 1, self.width,
                                 self.height),
                          dtype=np.float32)
        targets = np.empty(shape=(worker_batch_size, self.emotion_count),
                           dtype=np.float32)
        for idx in range(worker_batch_start, worker_batch_end):
            index = self.indices[idx]
            distorted_image = imgu.distort_img(self.data[index][1],
                                               self.data[index][3], self.width,
                                               self.height, self.max_shift,
                                               self.max_scale, self.max_angle,
                                               self.max_skew, self.do_flip)
            final_image = imgu.preproc_img(distorted_image)

            inputs[idx - worker_batch_start] = final_image
            targets[idx - worker_batch_start, :] = self._process_target(
                self.data[index][2])

        self.batch_start += current_batch_size
        return inputs, targets, worker_batch_size