def preprocess(self, ims, augment):
        def normalize(batch):
            return batch.astype(np.float32) / float(255)

        if augment:
            augmentations = iaa.Sequential([
                iaa.Resize(int(1.1 * hp.img_size)),
                iaa.Fliplr(0.5),
                iaa.Sometimes(0.4, iaa.Rotate((-30, 30))),
                iaa.Sometimes(0.4, iaa.Affine(scale=(0.9, 1.2))),
                iaa.Sometimes(0.5,
                              iaa.PerspectiveTransform(scale=(0.01, 0.20))),
                # Crop/resize image to proper dimension
                iaa.CropToFixedSize(hp.img_size, hp.img_size),
                iaa.Resize(hp.img_size),
                iaa.Sometimes(0.3, iaa.SaltAndPepper(0.01)),
                iaa.CLAHE(to_colorspace='HSV')
            ])
        else:
            augmentations = ia.Sequential([iaa.CLAHE(to_colorspace='HSV')])

        augmented = augmentations.augment_images(ims)
        for i in augmented:
            if i.shape != (hp.img_size, hp.img_size, 3):
                print(i.shape)
        augmented = np.stack(augmented, axis=0)
        return normalize(augmented)
Exemplo n.º 2
0
 def __init__(self, model_path):
         self.model_path = model_path
         self.seq_norm = iaa.Sequential([
                         iaa.CLAHE(),
                         iaa.LinearContrast(alpha=1.0)])
         self.__load_model()
         self.img = None
         self.pred = None
         self.root_coords = None
Exemplo n.º 3
0
 def __init__(self,
              df,
              hist_equal=False,
              augment_data=False,
              batch_size=2,
              target_size=Config.SHAPE,
              shuffle=True,
              save_images=False,
              input_channels=3,
              output="both"):
     'Initialization'
     self.df = df
     self.hist_equal = hist_equal
     self.augment_data = augment_data
     self.batch_size = batch_size
     self.target_size = target_size
     self.shuffle = shuffle
     self.save_images = save_images
     self.input_channels = input_channels
     self.output = output
     self.save_index = 0
     self.mask_channels = 1
     self.__init_info()
     self.on_epoch_end()
     self.seq = iaa.Sequential(
         [
             iaa.SomeOf(
                 (0, 4),
                 [
                     iaa.OneOf([
                         iaa.GaussianBlur(sigma=(0, 0.5)),
                         iaa.Sharpen(alpha=(0.0, 0.7)),
                     ]),
                     iaa.Fliplr(0.5, name="to_mask"),
                     iaa.Flipud(0.5, name="to_mask"),
                     #iaa.Crop(px=(0, 6), name="to_mask"),
                     iaa.Affine(scale=(0.7, 1.0),
                                translate_percent={
                                    "x": (-0.3, 0.3),
                                    "y": (-0.3, 0.3)
                                },
                                name="to_mask"),
                 ]),
         ],
         random_order=True)
     self.seq_img = iaa.Sequential([
         iaa.Add((-60, 60)),
     ])
     self.seq_norm = iaa.Sequential(
         [iaa.CLAHE(), iaa.LinearContrast(alpha=1.0)])
Exemplo n.º 4
0
 def __init__(self,
              df,
              input_shape,
              model,
              predictiontype,
              masktype='leaf'):
     #Visualize.__init__(self,df,model,masktype='hand')
     self.df = df
     self.input_shape = input_shape
     self.model = model
     self.predictiontype = predictiontype
     self.masktype = masktype
     self.prediction_threshold = None
     self.seq_norm = iaa.Sequential(
         [iaa.CLAHE(), iaa.LinearContrast(alpha=1.0)])
Exemplo n.º 5
0
def load_augmentations(flip=0.5,
                       blur=0.2,
                       crop=0.5,
                       contrast=0.3,
                       elastic=0.2,
                       affine=0.5):
    """
    Loads and configures data augmenter object

    Arguements:
    flip (float) -- probality of horizontal flip
    crop (float) -- probability of random crop
    blur (float) -- probability of gaussian blur
    contrast (float) -- probability of pixelwise color transformation
    elastic (float) -- probability of elastic distortion
    affine (float) -- probability of affine transform
    noise (float) -- probability of one of noises
    """
    aug = iaa.Sequential([
        iaa.Fliplr(flip),
        iaa.Sometimes(crop, iaa.Crop(px=(0, 20))),
        iaa.Sometimes(blur, iaa.GaussianBlur(sigma=(0.5, 5))),
        iaa.Sometimes(
            contrast,
            iaa.SomeOf((1, 5), [
                iaa.GammaContrast(per_channel=True, gamma=(0.25, 1.75)),
                iaa.LinearContrast(alpha=(0.25, 1.75), per_channel=True),
                iaa.HistogramEqualization(to_colorspace="HLS"),
                iaa.LogContrast(gain=(0.5, 1.0)),
                iaa.CLAHE(clip_limit=(1, 10))
            ]),
        ),
        iaa.Sometimes(
            elastic,
            iaa.OneOf([
                iaa.ElasticTransformation(alpha=20, sigma=1),
                iaa.ElasticTransformation(alpha=200, sigma=20)
            ])),
        iaa.Sometimes(
            affine,
            iaa.Affine(scale={
                "x": (0.8, 1.2),
                "y": (0.8, 1.2)
            },
                       rotate=(-30, 30),
                       order=[0, 1]))
    ])
    return aug
Exemplo n.º 6
0
def get_augmentations():
    def sometimes(aug, p=0.5):
        return iaa.Sometimes(p, aug)

    return iaa.Sequential([
        # sometimes(iaa.Affine(scale=(1, 1.6), translate_percent=0.2)),
        iaa.SomeOf(
            2,
            [
                sometimes(iaa.Multiply()),
                sometimes(iaa.GammaContrast()),
                sometimes(iaa.AddToSaturation()),
                sometimes(iaa.AddToBrightness()),
                # sometimes(iaa.AddToHue()),
                sometimes(iaa.CLAHE())
            ])
    ])
Exemplo n.º 7
0
def main():
    parser = argparse.ArgumentParser(description="Contrast check script")
    parser.add_argument("--per_channel", dest="per_channel", action="store_true")
    args = parser.parse_args()

    augs = []
    for p in [0.25, 0.5, 1.0, 2.0, (0.5, 1.5), [0.5, 1.0, 1.5]]:
        augs.append(("GammaContrast " + str(p), iaa.GammaContrast(p, per_channel=args.per_channel)))

    for cutoff in [0.25, 0.5, 0.75]:
        for gain in [5, 10, 15, 20, 25]:
            augs.append(("SigmoidContrast " + str(cutoff) + " " + str(gain), iaa.SigmoidContrast(gain, cutoff, per_channel=args.per_channel)))

    for gain in [0.0, 0.25, 0.5, 1.0, 2.0, (0.5, 1.5), [0.5, 1.0, 1.5]]:
        augs.append(("LogContrast " + str(gain), iaa.LogContrast(gain, per_channel=args.per_channel)))

    for alpha in [-1.0, 0.5, 0, 0.5, 1.0, 2.0, (0.5, 1.5), [0.5, 1.0, 1.5]]:
        augs.append(("LinearContrast " + str(alpha), iaa.LinearContrast(alpha, per_channel=args.per_channel)))

    augs.append(("AllChannelsHistogramEqualization", iaa.AllChannelsHistogramEqualization()))
    augs.append(("HistogramEqualization (Lab)", iaa.HistogramEqualization(to_colorspace=iaa.HistogramEqualization.Lab)))
    augs.append(("HistogramEqualization (HSV)", iaa.HistogramEqualization(to_colorspace=iaa.HistogramEqualization.HSV)))
    augs.append(("HistogramEqualization (HLS)", iaa.HistogramEqualization(to_colorspace=iaa.HistogramEqualization.HLS)))

    for clip_limit in [0.1, 1, 5, 10]:
        for tile_grid_size_px in [3, 7]:
            augs.append(("AllChannelsCLAHE %d %dx%d" % (clip_limit, tile_grid_size_px, tile_grid_size_px),
                         iaa.AllChannelsCLAHE(clip_limit=clip_limit, tile_grid_size_px=tile_grid_size_px,
                                              per_channel=args.per_channel)))

    for clip_limit in [1, 5, 10, 100, 200]:
        for tile_grid_size_px in [3, 7, 15]:
            augs.append(("CLAHE %d %dx%d" % (clip_limit, tile_grid_size_px, tile_grid_size_px),
                         iaa.CLAHE(clip_limit=clip_limit, tile_grid_size_px=tile_grid_size_px)))

    images = [data.astronaut()] * 16
    images = ia.imresize_many_images(np.uint8(images), (128, 128))
    for name, aug in augs:
        print("-----------")
        print(name)
        print("-----------")
        images_aug = aug.augment_images(images)
        images_aug[0] = images[0]
        grid = ia.draw_grid(images_aug, rows=4, cols=4)
        ia.imshow(grid)
Exemplo n.º 8
0
def _load_augmentation_aug_non_geometric():
    return iaa.Sequential([
        iaa.Sometimes(0.3, iaa.Multiply((0.5, 1.5), per_channel=0.5)),
        iaa.Sometimes(0.2, iaa.JpegCompression(compression=(70, 99))),
        iaa.Sometimes(0.2, iaa.GaussianBlur(sigma=(0, 3.0))),
        iaa.Sometimes(0.2, iaa.MotionBlur(k=15, angle=[-45, 45])),
        iaa.Sometimes(0.2, iaa.MultiplyHue((0.5, 1.5))),
        iaa.Sometimes(0.2, iaa.MultiplySaturation((0.5, 1.5))),
        iaa.Sometimes(
            0.34, iaa.MultiplyHueAndSaturation((0.5, 1.5), per_channel=True)),
        iaa.Sometimes(0.34, iaa.Grayscale(alpha=(0.0, 1.0))),
        iaa.Sometimes(0.2, iaa.ChangeColorTemperature((1100, 10000))),
        iaa.Sometimes(0.1, iaa.GammaContrast((0.5, 2.0))),
        iaa.Sometimes(0.2, iaa.SigmoidContrast(gain=(3, 10),
                                               cutoff=(0.4, 0.6))),
        iaa.Sometimes(0.1, iaa.CLAHE()),
        iaa.Sometimes(0.1, iaa.HistogramEqualization()),
        iaa.Sometimes(0.2, iaa.LinearContrast((0.5, 2.0), per_channel=0.5)),
        iaa.Sometimes(0.1, iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)))
    ])
def chapter_augmenters_clahe():
    fn_start = "contrast/clahe"

    aug = iaa.CLAHE()
    run_and_save_augseq(fn_start + ".jpg",
                        aug,
                        [ia.quokka(size=(128, 128)) for _ in range(4 * 2)],
                        cols=4,
                        rows=2)

    aug = iaa.CLAHE(clip_limit=(1, 10))
    run_and_save_augseq(fn_start + "_clip_limit.jpg",
                        aug,
                        [ia.quokka(size=(128, 128)) for _ in range(4 * 2)],
                        cols=4,
                        rows=2)

    aug = iaa.CLAHE(tile_grid_size_px=(3, 21))
    run_and_save_augseq(fn_start + "_grid_sizes_uniform.jpg",
                        aug,
                        [ia.quokka(size=(128, 128)) for _ in range(4 * 2)],
                        cols=4,
                        rows=2)

    aug = iaa.CLAHE(tile_grid_size_px=iap.Discretize(iap.Normal(loc=7,
                                                                scale=2)),
                    tile_grid_size_px_min=3)
    run_and_save_augseq(fn_start + "_grid_sizes_gaussian.jpg",
                        aug,
                        [ia.quokka(size=(128, 128)) for _ in range(4 * 2)],
                        cols=4,
                        rows=2)

    aug = iaa.CLAHE(tile_grid_size_px=((3, 21), [3, 5, 7]))
    run_and_save_augseq(fn_start + "_grid_sizes.jpg",
                        aug,
                        [ia.quokka(size=(128, 128)) for _ in range(4 * 2)],
                        cols=4,
                        rows=2)

    aug = iaa.CLAHE(from_colorspace=iaa.CLAHE.BGR, to_colorspace=iaa.CLAHE.HSV)
    quokka_bgr = cv2.cvtColor(ia.quokka(size=(128, 128)), cv2.COLOR_RGB2BGR)
    run_and_save_augseq(fn_start + "_bgr_to_hsv.jpg",
                        aug, [quokka_bgr for _ in range(4 * 2)],
                        cols=4,
                        rows=2,
                        image_colorspace="BGR")
Exemplo n.º 10
0
 def __init__(self,
              df,
              model,
              predictiontype='leaf',
              input_shape=(512, 768, 3),
              masktype='leaf'):
     self.df = df
     self.model = model
     self.predictiontype = predictiontype
     self.input_shape = input_shape
     self.figsize = (15, 15)
     self.prediction_threshold = None
     self.selected_row = None
     self.mode = None
     self.img = None
     self.msk = None
     self.prediction = None
     self.dice_score = None
     self.img_shape = None
     self.model_shape = None
     assert masktype == 'leaf' or masktype == 'root', 'Masktype not allowed'
     self.masktype = masktype
     self.seq_norm = iaa.Sequential(
         [iaa.CLAHE(), iaa.LinearContrast(alpha=1.0)])
Exemplo n.º 11
0
            iaa.GaussianBlur(sigma=(0, 1.5)),
            iaa.AverageBlur(k=(1, 5)),
            iaa.MedianBlur(k=(1, 5)),
            iaa.MotionBlur(k=(3, 5)),
        ]))
])

contrasts = iaa.Sequential([
    sometimes_010(
        iaa.OneOf([
            iaa.LogContrast((0.8, 1.2)),
            iaa.GammaContrast((0.8, 1.2)),
            iaa.LinearContrast((0.8, 1.2)),
            iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization()),
            iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization()),
            iaa.CLAHE(clip_limit=(1, 3)),
            iaa.AllChannelsCLAHE(clip_limit=(1, 3)),
        ]))
])

dropouts = iaa.Sequential([
    sometimes_010(
        iaa.OneOf([
            iaa.Dropout(p=0.01, per_channel=True),
            iaa.Dropout(p=0.01, per_channel=False),
            iaa.Cutout(fill_mode="constant",
                       cval=(0, 255),
                       size=(0.1, 0.4),
                       fill_per_channel=0.5),
            iaa.CoarseDropout((0.0, 0.08),
                              size_percent=(0.02, 0.25),
Exemplo n.º 12
0
##### Define (light) augemntations

BRIGHTEN = iaa.Multiply(
    (0.8, 1.4))  # make upper edge larger to get brighter images
SHARPEN = iaa.Sharpen(
    alpha=(0, 0.82))  # the larger alpha, the larger the effect. alpha <= 1

GAMMA_CONTRAST = iaa.GammaContrast((0.6, 1.3))
# param = Exponent for the contrast adjustment. Higher values darken the image. They seem to also remove
# some of the white clouds so careful with that

SHEAR = iaa.Affine(shear=(-10, 10))
ROTATE = iaa.Affine(rotate=(-10, 10))

SUBTLE_CLAHE = iaa.CLAHE(clip_limit=(0.5, 2), tile_grid_size_px=(6, 10))
# previous, less pronounced : iaa.CLAHE(clip_limit=(0.5,2), tile_grid_size_px = (5, 8))

GBLUR = iaa.GaussianBlur((
    0,
    1.9))  # Values in the range 0.0 (no blur) to 3.0 (strong blur) are common.

SCALE = iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)})

AUG_NAMES = [
    'brighten', 'gamma_contrast', 'clahe', 'rotate', 'shear', 'scale',
    'fliplr', 'gblur', 'sharpen'
]
######

Exemplo n.º 13
0
    def get_aug(self):
        #sometimes_bg = lambda aug: iaa.Sometimes(0.3, aug)
        sometimes_contrast = lambda aug: iaa.Sometimes(0.3, aug)
        sometimes_noise = lambda aug: iaa.Sometimes(0.6, aug)
        sometimes_blur = lambda aug: iaa.Sometimes(0.6, aug)
        sometimes_degrade_quality = lambda aug: iaa.Sometimes(0.9, aug)
        sometimes_blend = lambda aug: iaa.Sometimes(0.2, aug)

        seq = iaa.Sequential(
                [
                # crop some of the images by 0-30% of their height/width
                # Execute 0 to 4 of the following (less important) augmenters per
                    # image. Don't execute all of them, as that would often be way too
                    # strong.
    #             iaa.SomeOf((0, 4),
    #                     [ 
                # change the background color of some of the images chosing any one technique
#                sometimes_bg(iaa.OneOf([
#                            iaa.AddToHueAndSaturation((-60, 60)),
#                            iaa.Multiply((0.6, 1), per_channel=True),
#                            ])),
                #change the contrast of the input images chosing any one technique    
                sometimes_contrast(iaa.OneOf([
                            iaa.LinearContrast((0.5,1.5)),
                            iaa.SigmoidContrast(gain=(3, 5), cutoff=(0.4, 0.6)),
                            iaa.CLAHE(tile_grid_size_px=(3, 21)),
                            iaa.GammaContrast((0.5,1.0))
                            ])),

                #add noise to the input images chosing any one technique 
                sometimes_noise(iaa.OneOf([
                    iaa.AdditiveGaussianNoise(scale=(3,8)),
                    iaa.CoarseDropout((0.001,0.01), size_percent=0.5),
                    iaa.AdditiveLaplaceNoise(scale=(3,10)),
                    iaa.CoarsePepper((0.001,0.01), size_percent=(0.5)),
                    iaa.AdditivePoissonNoise(lam=(3.0,10.0)),
                    iaa.Pepper((0.001,0.01)),
                    iaa.Snowflakes(),
                    iaa.Dropout(0.01,0.01),
                    ])),

                #add blurring techniques to the input image
                sometimes_blur(iaa.OneOf([
                    iaa.AverageBlur(k=(3)),
                    iaa.GaussianBlur(sigma=(1.0)),
                    ])),

                # add techniques to degrade the iamge quality
                sometimes_degrade_quality(iaa.OneOf([
                            iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
                            iaa.Sharpen(alpha=(0.5), lightness=(0.75,1.5)),
                            iaa.BlendAlphaSimplexNoise(
                            foreground=iaa.Multiply(iap.Choice([1.5]), per_channel=False)
                            )
                            ])),

                # blend some patterns in the background    
                sometimes_blend(iaa.OneOf([
                            iaa.BlendAlpha(
                            factor=(0.6,0.8),
                            foreground=iaa.Sharpen(1.0, lightness=1),

                            background=iaa.CoarseDropout(p=0.1, size_px=np.random.randint(30))),

                            iaa.BlendAlphaFrequencyNoise(exponent=(-4),
                                       foreground=iaa.Multiply(iap.Choice([0.5]), per_channel=False)
                                       ),
                            iaa.BlendAlphaSimplexNoise(
                            foreground=iaa.Multiply(iap.Choice([0.5]), per_channel=True)
                            )
                      ])), 

                    ])
        return seq
Exemplo n.º 14
0
def _load_augmentation_aug_Clashe():
    return iaa.Sequential([iaa.Sometimes(1, iaa.CLAHE())])
Exemplo n.º 15
0
    # Create a motion blur augmenter with kernel size of (kernel x kernel) and a blur angle of either x or y degrees
    # (randomly picked per image).
    "Motion_Blur": lambda kernel, x, y: iaa.MotionBlur(k=kernel, angle=[x, y]),

    # Augmenter to apply standard histogram equalization to images (similar to CLAHE)
    "Histogram_Equalization": iaa.HistogramEqualization(),

    # Augmenter to perform standard histogram equalization on images, applied to all channels of each input image
    "All_Channels_Histogram_Equalization": iaa.AllChannelsHistogramEqualization(),

    # Contrast Limited Adaptive Histogram Equalization (CLAHE). This augmenter applies CLAHE to images, a form of
    # histogram equalization that normalizes within local image patches.
    # Creates a CLAHE augmenter with clip limit uniformly sampled from [cl_lo..cl_hi], i.e. 1 is rather low contrast
    # and 50 is rather high contrast. Kernel sizes of SxS, where S is uniformly sampled from [t_lo..t_hi].
    # Sampling happens once per image. (Note: more parameters are available for further specification)
    "CLAHE": lambda cl_lo, cl_hi, t_lo, t_hi: iaa.CLAHE(clip_limit=(cl_lo, cl_hi), tile_grid_size_px=(t_lo, t_hi)),

    # Contrast Limited Adaptive Histogram Equalization (refer above), applied to all channels of the input images.
    # CLAHE performs histogram equalization within image patches, i.e. over local neighbourhoods
    "All_Channels_CLAHE": lambda cl_lo, cl_hi, t_lo, t_hi:
    iaa.AllChannelsCLAHE(clip_limit=(cl_lo, cl_hi), tile_grid_size_px=(t_lo, t_hi)),

    # Augmenter that changes the contrast of images using a unique formula (using gamma).
    # Multiplier for gamma function is between lo and hi,, sampled randomly per image (higher values darken image)
    # For percent of all images values are sampled independently per channel.
    "Gamma_Contrast": lambda lo, hi, percent: iaa.GammaContrast((lo, hi), per_channel=percent),

    # Augmenter that changes the contrast of images using a unique formula (linear).
    # Multiplier for linear function is between lo and hi, sampled randomly per image
    # For percent of all images values are sampled independently per channel.
    "Linear_Contrast": lambda lo, hi, percent: iaa.LinearContrast((lo, hi), per_channel=percent),
    def __init__(self, configuration):
        """
        Initialized the configuration prameters 
    
        Arguments:
            configuration: file pointer
                The hitif configuration file 
        
        """
        import configparser

        config = configparser.ConfigParser()
        config.read(configuration)

        #Parse the augmentation parameters
        aug_prms = config['augmentation']
        self.CLAHE = eval(aug_prms['AllChannelsCLAHE'])
        self.Saturation = eval(aug_prms['Saturation'])
        self.impulse_noise = eval(aug_prms['ImpulseNoise'])
        self.gaussian_blur = eval(aug_prms['GaussianBlur'])
        self.poisson = eval(aug_prms['AdditivePoissonNoise'])
        self.median = eval(aug_prms['MedianBlur'])
        self.flip = float(aug_prms["flip"])
        self.rotate = eval(aug_prms["rotate"])
        self.gamma = eval(aug_prms["GammaContrast"])
        self.gaussian_noise = eval(aug_prms["AdditiveGaussianNoise"])
        self.dropout = eval(aug_prms["Dropout"])
        self.salt_peper = eval(aug_prms["SaltAndPepper"])

        from imgaug import augmenters as iaa
        import imgaug as ia

        import numpy as np
        seed = np.random.randint(0, 2**31 - 1)
        ia.seed(seed)

        self.augmenters = {}
        augmenters = self.augmenters

        #Affine augmentation
        augmenters["fliplr"] = iaa.Fliplr(self.flip)
        augmenters["flipud"] = iaa.Flipud(self.flip)
        augmenters["rotate"] = iaa.Affine(rotate=[self.rotate[0],\
                                                  self.rotate[1],\
                                                  self.rotate[2]])

        #Contrast augmentation

        #augmenters["CLAHE"] = iaa.AllChannelsCLAHE(self.CLAHE)
        augmenters["CLAHE"] = iaa.CLAHE(self.CLAHE)
        #augmenters["CLAHE"] = iaa.AllChannelsCLAHE(self.CLAHE[0], self.CLAHE[1], self.CLAHE[2],self.CLAHE[3])
        augmenters["gamma"] = iaa.GammaContrast(self.gamma, True)
        #augmenters['saturation'] = iaa.Lambda(func_images=self.saturate_images, func_heatmaps=self.func_heatmaps, func_keypoints=self.func_keypoints)
        augmenters['Saturation'] = iaa.Saturation(self.Saturation)

        #Blur augmenters
        augmenters["median_blur"] = iaa.MedianBlur(self.median)
        augmenters["gaussian_blur"] = iaa.GaussianBlur(self.gaussian_blur)

        #Noise augmenters
        augmenters["impulse_noise"] = iaa.ImpulseNoise(self.impulse_noise)
        augmenters["poisson_noise"] = iaa.AdditivePoissonNoise(self.poisson)
        augmenters["gaussian_noise"] = iaa.AdditiveGaussianNoise(
            scale=self.gaussian_noise)
        augmenters["dropout"] = iaa.Dropout(self.dropout)
    iaa.Sometimes(0.05,(iaa.Crop(px=(22, 45),keep_size=True))), # crop images from each side by 0 to 16px (randomly chosen)
    iaa.Sometimes(0.5,(iaa.Fliplr(1))), # horizontally flip 50% of the images
    iaa.Sometimes(0.02,iaa.GaussianBlur(sigma=(5, 7.0))), # blur images with a sigma of 0 to 3.0
    iaa.Sometimes(0.02 ,iaa.ImpulseNoise(p=(0.6,1))),
    iaa.Sometimes(0.02 ,iaa.EdgeDetect(alpha=(0.09,1))),
    #iaa.AddToBrightness(add=(100,124)),
    iaa.Sometimes(0.02 ,iaa.Canny(alpha=(0.8,0.9))),
    iaa.Sometimes(0.5 ,iaa.Grayscale(alpha=1.00)),
    iaa.Sometimes(0.5 ,iaa.ChannelShuffle(p=1)),
    #iaa.Sometimes(0.02 ,(iaa.geometric.Affine( scale=2,rotate=22,order=1))),
    iaa.Sometimes(0.5 ,iaa.Cartoon(blur_ksize=(11,13))),
    iaa.Sometimes(0.02 ,iaa.CenterCropToAspectRatio(1)),
    iaa.Sometimes(0.02 ,iaa.CenterCropToFixedSize(100,100)),
    iaa.Sometimes(0.12 ,iaa.ChangeColorTemperature(kelvin=(2222,3333))),
    #iaa.segmentation(),
    iaa.Sometimes(0.12 ,iaa.CLAHE(clip_limit=(4,8))),
    iaa.Sometimes(0.8 ,iaa.Rotate(rotate=(-90,90),order=1))
])

plt.figure(figsize=(12,12))


ls=glob.glob(path)
res=[]
for idx,l in enumerate(ls):
    res.append(Parser.myType(l,idx,classes=['bird','zebra']))


def our_generator(res):
    for i in res:
      img= cv2.imread(ls[i['image_id']].replace('.xml','.jpg'))
Exemplo n.º 18
0
    iaa.Crop(px=(22, 45),keep_size=False), # crop images from each side by 0 to 16px (randomly chosen)
    iaa.Fliplr(1), # horizontally flip 50% of the images
    iaa.GaussianBlur(sigma=(5, 7.0)), # blur images with a sigma of 0 to 3.0
    iaa.ImpulseNoise(p=(0.6,1)),
    iaa.EdgeDetect(alpha=(0.9,1)),
    #iaa.AddToBrightness(add=(100,124)),
    iaa.Canny(alpha=(0.8,0.9)),
    iaa.Grayscale(alpha=1.00),
    iaa.ChannelShuffle(p=1),
    iaa.geometric.Affine( scale=2,rotate=22, backend='cv2'),
    iaa.Cartoon(blur_ksize=(11,13)),
    iaa.CenterCropToAspectRatio(1),
    iaa.CenterCropToFixedSize(100,100),
    iaa.ChangeColorTemperature(kelvin=(2222,3333)),
    #iaa.segmentation(),
    iaa.CLAHE(clip_limit=(4,8)),
    iaa.Rotate(rotate=(-30,90))
])

plt.figure(figsize=(12,12))

for idx,Augmentor in enumerate(seq):
    # print(1)
    ax=plt.subplot(4,4,idx+1)
    ax.axis('off')
    plt.tight_layout()
    title=str(Augmentor).split('(')[0]
    #plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, 
    #        hspace = 0.2, wspace = 0)
    #plt.margins(0,0)
    ax.set_title(title)
# @Author  : shargootian
# @Email   : [email protected]
# @File    : dataset.py

import os
import json
import random
import cv2 as cv
import numpy as np
from imgaug import augmenters as iaa

aug = [
    iaa.LinearContrast(alpha=2),
    iaa.SigmoidContrast(gain=10),
    iaa.GammaContrast(gamma=2),
    iaa.CLAHE(clip_limit=(1, 5)),
    iaa.Grayscale(alpha=1.0),
    iaa.AddToHueAndSaturation((-20, 20), per_channel=True),
    iaa.BilateralBlur(d=6),
    iaa.MotionBlur(k=7),
    iaa.MedianBlur(k=3),
    iaa.AverageBlur(k=3),
    iaa.AdditiveGaussianNoise(loc=0.8, scale=(0.01, 0.08 * 255)),
    iaa.ContrastNormalization((0.3, 1.5)),
    iaa.Sharpen(alpha=0, lightness=1)
]


class Dataset(object):
    def __init__(self, args):
        self.args = args
Exemplo n.º 20
0
    def augmentation_of_image(self, test_image, output_path):
        self.test_image = test_image
        self.output_path = output_path
        #define the Augmenters

        #properties: A range of values signifies that one of these numbers is randmoly chosen for every augmentation for every batch

        # Apply affine transformations to each image.
        rotate = iaa.Affine(rotate=(-90, 90))
        scale = iaa.Affine(scale={
            "x": (0.5, 0.9),
            "y": (0.5, 0.9)
        })
        translation = iaa.Affine(translate_percent={
            "x": (-0.15, 0.15),
            "y": (-0.15, 0.15)
        })
        shear = iaa.Affine(shear=(-2, 2))
        #plagio parallhlogrammo wihthin a range (-8,8)
        zoom = iaa.PerspectiveTransform(
            scale=(0.01, 0.15),
            keep_size=True)  # do not change the output size of the image
        h_flip = iaa.Fliplr(1.0)
        # flip horizontally all images (100%)
        v_flip = iaa.Flipud(1.0)
        #flip vertically all images
        padding = iaa.KeepSizeByResize(
            iaa.CropAndPad(percent=(0.05, 0.25))
        )  #positive values correspond to padding 5%-25% of the image,but keeping the origial output size of the new image

        #More augmentations
        blur = iaa.GaussianBlur(
            sigma=(0, 1.22)
        )  # blur images with a sigma 0-2,a number ofthis range is randomly chosen everytime.Low values suggested for this application
        contrast = iaa.contrast.LinearContrast((0.75, 1.5))
        #change the contrast by a factor of 0.75 and 1.5 sampled randomly per image
        contrast_channels = iaa.LinearContrast(
            (0.75, 1.5), per_channel=True
        )  #and for 50% of all images also independently per channel:
        sharpen = iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5))
        #sharpen with an alpha from 0(no sharpening) - 1(full sharpening) and change the lightness form 0.75 to 1.5
        gauss_noise = iaa.AdditiveGaussianNoise(
            scale=0.111 * 255, per_channel=True
        )  #some random gaussian noise might occur in cell images,especially when image quality is poor
        laplace_noise = iaa.AdditiveLaplaceNoise(
            scale=(0, 0.111 * 255)
        )  #we choose to be in a small range, as it is logical for training the cell images

        #Brightness
        brightness = iaa.Multiply(
            (0.35, 1.65
             ))  #change brightness between 35% or 165% of the original image
        brightness_channels = iaa.Multiply(
            (0.5, 1.5), per_channel=0.75
        )  # change birghtness for 25% of images.For the remaining 75%, change it, but also channel-wise.

        #CHANNELS (RGB)=(Red,Green,Blue)
        red = iaa.WithChannels(0, iaa.Add(
            (10,
             100)))  #increase each Red-pixels value within the range 10-100
        red_rot = iaa.WithChannels(0, iaa.Affine(
            rotate=(0, 45)))  #rotate each image's red channel by 0-45 degrees
        green = iaa.WithChannels(1, iaa.Add(
            (10,
             100)))  #increase each Green-pixels value within the range 10-100
        green_rot = iaa.WithChannels(1, iaa.Affine(
            rotate=(0,
                    45)))  #rotate each image's green channel by 0-45 degrees
        blue = iaa.WithChannels(2, iaa.Add(
            (10,
             100)))  #increase each Blue-pixels value within the range 10-100
        blue_rot = iaa.WithChannels(2, iaa.Affine(
            rotate=(0, 45)))  #rotate each image's blue channel by 0-45 degrees

        #colors
        channel_shuffle = iaa.ChannelShuffle(1.0)
        #shuffle all images of the batch
        grayscale = iaa.Grayscale(1.0)
        hue_n_saturation = iaa.MultiplyHueAndSaturation(
            (0.5, 1.5), per_channel=True
        )  #change hue and saturation with this range of values for different values
        add_hue_saturation = iaa.AddToHueAndSaturation(
            (-50, 50),
            per_channel=True)  #add more hue and saturation to its pixels
        #Quantize colors using k-Means clustering
        kmeans_color = iaa.KMeansColorQuantization(
            n_colors=(4, 16)
        )  #quantizes to k means 4 to 16 colors (randomly chosen). Quantizes colors up to 16 colors

        #Alpha Blending
        blend = iaa.AlphaElementwise((0, 1.0), iaa.Grayscale((0, 1.0)))
        #blend depending on which value is greater

        #Contrast augmentors
        clahe = iaa.CLAHE(tile_grid_size_px=((3, 21), [
            0, 2, 3, 4, 5, 6, 7
        ]))  #create a clahe contrast augmentor H=(3,21) and W=(0,7)
        histogram = iaa.HistogramEqualization(
        )  #performs histogram equalization

        #Augmentation list of metadata augmentors
        OneofRed = iaa.OneOf([red])
        OneofGreen = iaa.OneOf([green])
        OneofBlue = iaa.OneOf([blue])
        contrast_n_shit = iaa.OneOf(
            [contrast, brightness, brightness_channels])
        SomeAug = iaa.SomeOf(
            2, [rotate, scale, translation, shear, h_flip, v_flip],
            random_order=True)
        SomeClahe = iaa.SomeOf(
            2, [
                clahe,
                iaa.CLAHE(clip_limit=(1, 10)),
                iaa.CLAHE(tile_grid_size_px=(3, 21)),
                iaa.GammaContrast((0.5, 2.0)),
                iaa.AllChannelsCLAHE(),
                iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True)
            ],
            random_order=True)  #Random selection from clahe augmentors
        edgedetection = iaa.OneOf([
            iaa.EdgeDetect(alpha=(0, 0.7)),
            iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0))
        ])
        # Search in some images either for all edges or for directed edges.These edges are then marked in a black and white image and overlayed with the original image using an alpha of 0 to 0.7.
        canny_filter = iaa.OneOf([
            iaa.Canny(),
            iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7])
        ])
        #choose one of the 2 canny filter options
        OneofNoise = iaa.OneOf([blur, gauss_noise, laplace_noise])
        Color_1 = iaa.OneOf([
            channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation,
            kmeans_color
        ])
        Color_2 = iaa.OneOf([
            channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation,
            kmeans_color
        ])
        Flip = iaa.OneOf([histogram, v_flip, h_flip])

        #Define the augmentors used in the DA
        Augmentors = [
            SomeAug, SomeClahe, SomeClahe, edgedetection, sharpen,
            canny_filter, OneofRed, OneofGreen, OneofBlue, OneofNoise, Color_1,
            Color_2, Flip, contrast_n_shit
        ]

        for i in range(0, 14):
            img = cv2.imread(test_image)  #read you image
            images = np.array(
                [img for _ in range(14)], dtype=np.uint8
            )  # 12 is the size of the array that will hold 8 different images
            images_aug = Augmentors[i].augment_images(
                images
            )  #alternate between the different augmentors for a test image
            cv2.imwrite(
                os.path.join(output_path,
                             test_image + "new" + str(i) + '.jpg'),
                images_aug[i])  #write all changed images
Exemplo n.º 21
0
def create_augmenters(height, width, height_augmentable, width_augmentable,
                      only_augmenters):
    def lambda_func_images(images, random_state, parents, hooks):
        return images

    def lambda_func_heatmaps(heatmaps, random_state, parents, hooks):
        return heatmaps

    def lambda_func_keypoints(keypoints, random_state, parents, hooks):
        return keypoints

    def assertlambda_func_images(images, random_state, parents, hooks):
        return True

    def assertlambda_func_heatmaps(heatmaps, random_state, parents, hooks):
        return True

    def assertlambda_func_keypoints(keypoints, random_state, parents, hooks):
        return True

    augmenters_meta = [
        iaa.Sequential([iaa.Noop(), iaa.Noop()],
                       random_order=False,
                       name="Sequential_2xNoop"),
        iaa.Sequential([iaa.Noop(), iaa.Noop()],
                       random_order=True,
                       name="Sequential_2xNoop_random_order"),
        iaa.SomeOf((1, 3),
                   [iaa.Noop(), iaa.Noop(), iaa.Noop()],
                   random_order=False,
                   name="SomeOf_3xNoop"),
        iaa.SomeOf((1, 3),
                   [iaa.Noop(), iaa.Noop(), iaa.Noop()],
                   random_order=True,
                   name="SomeOf_3xNoop_random_order"),
        iaa.OneOf([iaa.Noop(), iaa.Noop(), iaa.Noop()], name="OneOf_3xNoop"),
        iaa.Sometimes(0.5, iaa.Noop(), name="Sometimes_Noop"),
        iaa.WithChannels([1, 2], iaa.Noop(), name="WithChannels_1_and_2_Noop"),
        iaa.Noop(name="Noop"),
        iaa.Lambda(func_images=lambda_func_images,
                   func_heatmaps=lambda_func_heatmaps,
                   func_keypoints=lambda_func_keypoints,
                   name="Lambda"),
        iaa.AssertLambda(func_images=assertlambda_func_images,
                         func_heatmaps=assertlambda_func_heatmaps,
                         func_keypoints=assertlambda_func_keypoints,
                         name="AssertLambda"),
        iaa.AssertShape((None, height_augmentable, width_augmentable, None),
                        name="AssertShape"),
        iaa.ChannelShuffle(0.5, name="ChannelShuffle")
    ]
    augmenters_arithmetic = [
        iaa.Add((-10, 10), name="Add"),
        iaa.AddElementwise((-10, 10), name="AddElementwise"),
        #iaa.AddElementwise((-500, 500), name="AddElementwise"),
        iaa.AdditiveGaussianNoise(scale=(5, 10), name="AdditiveGaussianNoise"),
        iaa.AdditiveLaplaceNoise(scale=(5, 10), name="AdditiveLaplaceNoise"),
        iaa.AdditivePoissonNoise(lam=(1, 5), name="AdditivePoissonNoise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.Dropout((0.01, 0.05), name="Dropout"),
        iaa.CoarseDropout((0.01, 0.05),
                          size_percent=(0.01, 0.1),
                          name="CoarseDropout"),
        iaa.ReplaceElementwise((0.01, 0.05), (0, 255),
                               name="ReplaceElementwise"),
        #iaa.ReplaceElementwise((0.95, 0.99), (0, 255), name="ReplaceElementwise"),
        iaa.SaltAndPepper((0.01, 0.05), name="SaltAndPepper"),
        iaa.ImpulseNoise((0.01, 0.05), name="ImpulseNoise"),
        iaa.CoarseSaltAndPepper((0.01, 0.05),
                                size_percent=(0.01, 0.1),
                                name="CoarseSaltAndPepper"),
        iaa.Salt((0.01, 0.05), name="Salt"),
        iaa.CoarseSalt((0.01, 0.05),
                       size_percent=(0.01, 0.1),
                       name="CoarseSalt"),
        iaa.Pepper((0.01, 0.05), name="Pepper"),
        iaa.CoarsePepper((0.01, 0.05),
                         size_percent=(0.01, 0.1),
                         name="CoarsePepper"),
        iaa.Invert(0.1, name="Invert"),
        # ContrastNormalization
        iaa.JpegCompression((50, 99), name="JpegCompression")
    ]
    augmenters_blend = [
        iaa.Alpha((0.01, 0.99), iaa.Noop(), name="Alpha"),
        iaa.AlphaElementwise((0.01, 0.99), iaa.Noop(),
                             name="AlphaElementwise"),
        iaa.SimplexNoiseAlpha(iaa.Noop(), name="SimplexNoiseAlpha"),
        iaa.FrequencyNoiseAlpha((-2.0, 2.0),
                                iaa.Noop(),
                                name="FrequencyNoiseAlpha")
    ]
    augmenters_blur = [
        iaa.GaussianBlur(sigma=(1.0, 5.0), name="GaussianBlur"),
        iaa.AverageBlur(k=(3, 11), name="AverageBlur"),
        iaa.MedianBlur(k=(3, 11), name="MedianBlur"),
        iaa.BilateralBlur(d=(3, 11), name="BilateralBlur"),
        iaa.MotionBlur(k=(3, 11), name="MotionBlur")
    ]
    augmenters_color = [
        # InColorspace (deprecated)
        iaa.WithColorspace(to_colorspace="HSV",
                           children=iaa.Noop(),
                           name="WithColorspace"),
        iaa.WithHueAndSaturation(children=iaa.Noop(),
                                 name="WithHueAndSaturation"),
        iaa.MultiplyHueAndSaturation((0.8, 1.2),
                                     name="MultiplyHueAndSaturation"),
        iaa.MultiplyHue((-1.0, 1.0), name="MultiplyHue"),
        iaa.MultiplySaturation((0.8, 1.2), name="MultiplySaturation"),
        iaa.AddToHueAndSaturation((-10, 10), name="AddToHueAndSaturation"),
        iaa.AddToHue((-10, 10), name="AddToHue"),
        iaa.AddToSaturation((-10, 10), name="AddToSaturation"),
        iaa.ChangeColorspace(to_colorspace="HSV", name="ChangeColorspace"),
        iaa.Grayscale((0.01, 0.99), name="Grayscale"),
        iaa.KMeansColorQuantization((2, 16), name="KMeansColorQuantization"),
        iaa.UniformColorQuantization((2, 16), name="UniformColorQuantization")
    ]
    augmenters_contrast = [
        iaa.GammaContrast(gamma=(0.5, 2.0), name="GammaContrast"),
        iaa.SigmoidContrast(gain=(5, 20),
                            cutoff=(0.25, 0.75),
                            name="SigmoidContrast"),
        iaa.LogContrast(gain=(0.7, 1.0), name="LogContrast"),
        iaa.LinearContrast((0.5, 1.5), name="LinearContrast"),
        iaa.AllChannelsCLAHE(clip_limit=(2, 10),
                             tile_grid_size_px=(3, 11),
                             name="AllChannelsCLAHE"),
        iaa.CLAHE(clip_limit=(2, 10),
                  tile_grid_size_px=(3, 11),
                  to_colorspace="HSV",
                  name="CLAHE"),
        iaa.AllChannelsHistogramEqualization(
            name="AllChannelsHistogramEqualization"),
        iaa.HistogramEqualization(to_colorspace="HSV",
                                  name="HistogramEqualization"),
    ]
    augmenters_convolutional = [
        iaa.Convolve(np.float32([[0, 0, 0], [0, 1, 0], [0, 0, 0]]),
                     name="Convolve_3x3"),
        iaa.Sharpen(alpha=(0.01, 0.99), lightness=(0.5, 2), name="Sharpen"),
        iaa.Emboss(alpha=(0.01, 0.99), strength=(0, 2), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.01, 0.99), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.01, 0.99), name="DirectedEdgeDetect")
    ]
    augmenters_edges = [iaa.Canny(alpha=(0.01, 0.99), name="Canny")]
    augmenters_flip = [
        iaa.Fliplr(1.0, name="Fliplr"),
        iaa.Flipud(1.0, name="Flipud")
    ]
    augmenters_geometric = [
        iaa.Affine(scale=(0.9, 1.1),
                   translate_percent={
                       "x": (-0.05, 0.05),
                       "y": (-0.05, 0.05)
                   },
                   rotate=(-10, 10),
                   shear=(-10, 10),
                   order=0,
                   mode="constant",
                   cval=(0, 255),
                   name="Affine_order_0_constant"),
        iaa.Affine(scale=(0.9, 1.1),
                   translate_percent={
                       "x": (-0.05, 0.05),
                       "y": (-0.05, 0.05)
                   },
                   rotate=(-10, 10),
                   shear=(-10, 10),
                   order=1,
                   mode="constant",
                   cval=(0, 255),
                   name="Affine_order_1_constant"),
        iaa.Affine(scale=(0.9, 1.1),
                   translate_percent={
                       "x": (-0.05, 0.05),
                       "y": (-0.05, 0.05)
                   },
                   rotate=(-10, 10),
                   shear=(-10, 10),
                   order=3,
                   mode="constant",
                   cval=(0, 255),
                   name="Affine_order_3_constant"),
        iaa.Affine(scale=(0.9, 1.1),
                   translate_percent={
                       "x": (-0.05, 0.05),
                       "y": (-0.05, 0.05)
                   },
                   rotate=(-10, 10),
                   shear=(-10, 10),
                   order=1,
                   mode="edge",
                   cval=(0, 255),
                   name="Affine_order_1_edge"),
        iaa.Affine(scale=(0.9, 1.1),
                   translate_percent={
                       "x": (-0.05, 0.05),
                       "y": (-0.05, 0.05)
                   },
                   rotate=(-10, 10),
                   shear=(-10, 10),
                   order=1,
                   mode="constant",
                   cval=(0, 255),
                   backend="skimage",
                   name="Affine_order_1_constant_skimage"),
        # TODO AffineCv2
        iaa.PiecewiseAffine(scale=(0.01, 0.05),
                            nb_rows=4,
                            nb_cols=4,
                            order=1,
                            mode="constant",
                            name="PiecewiseAffine_4x4_order_1_constant"),
        iaa.PiecewiseAffine(scale=(0.01, 0.05),
                            nb_rows=4,
                            nb_cols=4,
                            order=0,
                            mode="constant",
                            name="PiecewiseAffine_4x4_order_0_constant"),
        iaa.PiecewiseAffine(scale=(0.01, 0.05),
                            nb_rows=4,
                            nb_cols=4,
                            order=1,
                            mode="edge",
                            name="PiecewiseAffine_4x4_order_1_edge"),
        iaa.PiecewiseAffine(scale=(0.01, 0.05),
                            nb_rows=8,
                            nb_cols=8,
                            order=1,
                            mode="constant",
                            name="PiecewiseAffine_8x8_order_1_constant"),
        iaa.PerspectiveTransform(scale=(0.01, 0.05),
                                 keep_size=False,
                                 name="PerspectiveTransform"),
        iaa.PerspectiveTransform(scale=(0.01, 0.05),
                                 keep_size=True,
                                 name="PerspectiveTransform_keep_size"),
        iaa.ElasticTransformation(
            alpha=(1, 10),
            sigma=(0.5, 1.5),
            order=0,
            mode="constant",
            cval=0,
            name="ElasticTransformation_order_0_constant"),
        iaa.ElasticTransformation(
            alpha=(1, 10),
            sigma=(0.5, 1.5),
            order=1,
            mode="constant",
            cval=0,
            name="ElasticTransformation_order_1_constant"),
        iaa.ElasticTransformation(
            alpha=(1, 10),
            sigma=(0.5, 1.5),
            order=1,
            mode="nearest",
            cval=0,
            name="ElasticTransformation_order_1_nearest"),
        iaa.ElasticTransformation(
            alpha=(1, 10),
            sigma=(0.5, 1.5),
            order=1,
            mode="reflect",
            cval=0,
            name="ElasticTransformation_order_1_reflect"),
        iaa.Rot90((1, 3), keep_size=False, name="Rot90"),
        iaa.Rot90((1, 3), keep_size=True, name="Rot90_keep_size")
    ]
    augmenters_pooling = [
        iaa.AveragePooling(kernel_size=(1, 16),
                           keep_size=False,
                           name="AveragePooling"),
        iaa.AveragePooling(kernel_size=(1, 16),
                           keep_size=True,
                           name="AveragePooling_keep_size"),
        iaa.MaxPooling(kernel_size=(1, 16), keep_size=False,
                       name="MaxPooling"),
        iaa.MaxPooling(kernel_size=(1, 16),
                       keep_size=True,
                       name="MaxPooling_keep_size"),
        iaa.MinPooling(kernel_size=(1, 16), keep_size=False,
                       name="MinPooling"),
        iaa.MinPooling(kernel_size=(1, 16),
                       keep_size=True,
                       name="MinPooling_keep_size"),
        iaa.MedianPooling(kernel_size=(1, 16),
                          keep_size=False,
                          name="MedianPooling"),
        iaa.MedianPooling(kernel_size=(1, 16),
                          keep_size=True,
                          name="MedianPooling_keep_size")
    ]
    augmenters_segmentation = [
        iaa.Superpixels(p_replace=(0.05, 1.0),
                        n_segments=(10, 100),
                        max_size=64,
                        interpolation="cubic",
                        name="Superpixels_max_size_64_cubic"),
        iaa.Superpixels(p_replace=(0.05, 1.0),
                        n_segments=(10, 100),
                        max_size=64,
                        interpolation="linear",
                        name="Superpixels_max_size_64_linear"),
        iaa.Superpixels(p_replace=(0.05, 1.0),
                        n_segments=(10, 100),
                        max_size=128,
                        interpolation="linear",
                        name="Superpixels_max_size_128_linear"),
        iaa.Superpixels(p_replace=(0.05, 1.0),
                        n_segments=(10, 100),
                        max_size=224,
                        interpolation="linear",
                        name="Superpixels_max_size_224_linear"),
        iaa.UniformVoronoi(n_points=(250, 1000), name="UniformVoronoi"),
        iaa.RegularGridVoronoi(n_rows=(16, 31),
                               n_cols=(16, 31),
                               name="RegularGridVoronoi"),
        iaa.RelativeRegularGridVoronoi(n_rows_frac=(0.07, 0.14),
                                       n_cols_frac=(0.07, 0.14),
                                       name="RelativeRegularGridVoronoi"),
    ]
    augmenters_size = [
        iaa.Resize((0.8, 1.2), interpolation="nearest", name="Resize_nearest"),
        iaa.Resize((0.8, 1.2), interpolation="linear", name="Resize_linear"),
        iaa.Resize((0.8, 1.2), interpolation="cubic", name="Resize_cubic"),
        iaa.CropAndPad(percent=(-0.2, 0.2),
                       pad_mode="constant",
                       pad_cval=(0, 255),
                       keep_size=False,
                       name="CropAndPad"),
        iaa.CropAndPad(percent=(-0.2, 0.2),
                       pad_mode="edge",
                       pad_cval=(0, 255),
                       keep_size=False,
                       name="CropAndPad_edge"),
        iaa.CropAndPad(percent=(-0.2, 0.2),
                       pad_mode="constant",
                       pad_cval=(0, 255),
                       name="CropAndPad_keep_size"),
        iaa.Pad(percent=(0.05, 0.2),
                pad_mode="constant",
                pad_cval=(0, 255),
                keep_size=False,
                name="Pad"),
        iaa.Pad(percent=(0.05, 0.2),
                pad_mode="edge",
                pad_cval=(0, 255),
                keep_size=False,
                name="Pad_edge"),
        iaa.Pad(percent=(0.05, 0.2),
                pad_mode="constant",
                pad_cval=(0, 255),
                name="Pad_keep_size"),
        iaa.Crop(percent=(0.05, 0.2), keep_size=False, name="Crop"),
        iaa.Crop(percent=(0.05, 0.2), name="Crop_keep_size"),
        iaa.PadToFixedSize(width=width + 10,
                           height=height + 10,
                           pad_mode="constant",
                           pad_cval=(0, 255),
                           name="PadToFixedSize"),
        iaa.CropToFixedSize(width=width - 10,
                            height=height - 10,
                            name="CropToFixedSize"),
        iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10,
                                                 width=width - 10),
                             interpolation="nearest",
                             name="KeepSizeByResize_CropToFixedSize_nearest"),
        iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10,
                                                 width=width - 10),
                             interpolation="linear",
                             name="KeepSizeByResize_CropToFixedSize_linear"),
        iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10,
                                                 width=width - 10),
                             interpolation="cubic",
                             name="KeepSizeByResize_CropToFixedSize_cubic"),
    ]
    augmenters_weather = [
        iaa.FastSnowyLandscape(lightness_threshold=(100, 255),
                               lightness_multiplier=(1.0, 4.0),
                               name="FastSnowyLandscape"),
        iaa.Clouds(name="Clouds"),
        iaa.Fog(name="Fog"),
        iaa.CloudLayer(intensity_mean=(196, 255),
                       intensity_freq_exponent=(-2.5, -2.0),
                       intensity_coarse_scale=10,
                       alpha_min=0,
                       alpha_multiplier=(0.25, 0.75),
                       alpha_size_px_max=(2, 8),
                       alpha_freq_exponent=(-2.5, -2.0),
                       sparsity=(0.8, 1.0),
                       density_multiplier=(0.5, 1.0),
                       name="CloudLayer"),
        iaa.Snowflakes(name="Snowflakes"),
        iaa.SnowflakesLayer(density=(0.005, 0.075),
                            density_uniformity=(0.3, 0.9),
                            flake_size=(0.2, 0.7),
                            flake_size_uniformity=(0.4, 0.8),
                            angle=(-30, 30),
                            speed=(0.007, 0.03),
                            blur_sigma_fraction=(0.0001, 0.001),
                            name="SnowflakesLayer")
    ]

    augmenters = (augmenters_meta + augmenters_arithmetic + augmenters_blend +
                  augmenters_blur + augmenters_color + augmenters_contrast +
                  augmenters_convolutional + augmenters_edges +
                  augmenters_flip + augmenters_geometric + augmenters_pooling +
                  augmenters_segmentation + augmenters_size +
                  augmenters_weather)

    if only_augmenters is not None:
        augmenters_reduced = []
        for augmenter in augmenters:
            if any([
                    re.search(pattern, augmenter.name)
                    for pattern in only_augmenters
            ]):
                augmenters_reduced.append(augmenter)
        augmenters = augmenters_reduced

    return augmenters
class AugmentationScheme:

    # Dictionary containing all possible augmentation functions
    Augmentations = {

        # Convert images to HSV, then increase each pixel's Hue (H), Saturation (S) or Value/lightness (V) [0, 1, 2]
        # value by an amount in between lo and hi:
        "HSV":
        lambda channel, lo, hi: iaa.WithColorspace(
            to_colorspace="HSV",
            from_colorspace="RGB",
            children=iaa.WithChannels(channel, iaa.Add((lo, hi)))),

        # The augmenter first transforms images to HSV color space, then adds random values (lo to hi)
        # to the H and S channels and afterwards converts back to RGB.
        # (independently per channel and the same value for all pixels within that channel)
        "Add_To_Hue_And_Saturation":
        lambda lo, hi: iaa.AddToHueAndSaturation((lo, hi), per_channel=True),

        # Increase each pixel’s channel-value (redness/greenness/blueness) [0, 1, 2] by value in between lo and hi:
        "Increase_Channel":
        lambda channel, lo, hi: iaa.WithChannels(channel, iaa.Add((lo, hi))),
        # Rotate each image’s channel [R=0, G=1, B=2] by value in between lo and hi degrees:
        "Rotate_Channel":
        lambda channel, lo, hi: iaa.WithChannels(channel,
                                                 iaa.Affine(rotate=(lo, hi))),

        # Augmenter that never changes input images (“no operation”).
        "No_Operation":
        iaa.Noop(),

        # Pads images, i.e. adds columns/rows to them. Pads image by value in between lo and hi
        # percent relative to its original size (only accepts positive values in range[0, 1]):
        # If s_i is false, The value will be sampled once per image and used for all sides
        # (i.e. all sides gain/lose the same number of rows/columns)
        # NOTE: automatically resizes images back to their original size after it has augmented them.
        "Pad_Percent":
        lambda lo, hi, s_i: iaa.Pad(
            percent=(lo, hi), keep_size=True, sample_independently=s_i),

        # Pads images by a number of pixels between lo and hi
        # If s_i is false, The value will be sampled once per image and used for all sides
        # (i.e. all sides gain/lose the same number of rows/columns)
        "Pad_Pixels":
        lambda lo, hi, s_i: iaa.Pad(
            px=(lo, hi), keep_size=True, sample_independently=s_i),

        # Crops/cuts away pixels at the sides of the image.
        # Crops images by value in between lo and hi (only accepts positive values in range[0, 1]):
        # If s_i is false, The value will be sampled once per image and used for all sides
        # (i.e. all sides gain/lose the same number of rows/columns)
        # NOTE: automatically resizes images back to their original size after it has augmented them.
        "Crop_Percent":
        lambda lo, hi, s_i: iaa.Crop(
            percent=(lo, hi), keep_size=True, sample_independently=s_i),

        # Crops images by a number of pixels between lo and hi
        # If s_i is false, The value will be sampled once per image and used for all sides
        # (i.e. all sides gain/lose the same number of rows/columns)
        "Crop_Pixels":
        lambda lo, hi, s_i: iaa.Crop(
            px=(lo, hi), keep_size=True, sample_independently=s_i),

        # Flip/mirror percent (i.e 0.5) of the input images horizontally
        # The default probability is 0, so to flip all images, percent=1
        "Flip_lr":
        iaa.Fliplr(1),

        # Flip/mirror percent (i.e 0.5) of the input images vertically
        # The default probability is 0, so to flip all images, percent=1
        "Flip_ud":
        iaa.Flipud(1),

        # Completely or partially transform images to their superpixel representation.
        # Generate s_pix_lo to s_pix_hi superpixels per image. Replace each superpixel with a probability between
        # prob_lo and prob_hi with range[0, 1] (sampled once per image) by its average pixel color.
        "Superpixels":
        lambda prob_lo, prob_hi, s_pix_lo, s_pix_hi: iaa.Superpixels(
            p_replace=(prob_lo, prob_hi), n_segments=(s_pix_lo, s_pix_hi)),

        # Change images to grayscale and overlay them with the original image by varying strengths,
        # effectively removing alpha_lo to alpha_hi of the color:
        "Grayscale":
        lambda alpha_lo, alpha_hi: iaa.Grayscale(alpha=(alpha_lo, alpha_hi)),

        # Blur each image with a gaussian kernel with a sigma between sigma_lo and sigma_hi:
        "Gaussian_Blur":
        lambda sigma_lo, sigma_hi: iaa.GaussianBlur(sigma=(sigma_lo, sigma_hi)
                                                    ),

        # Blur each image using a mean over neighbourhoods that have random sizes,
        # which can vary between h_lo and h_hi in height and w_lo and w_hi in width:
        "Average_Blur":
        lambda h_lo, h_hi, w_lo, w_hi: iaa.AverageBlur(k=((h_lo, h_hi),
                                                          (w_lo, w_hi))),

        # Blur each image using a median over neighbourhoods that have a random size between lo x lo and hi x hi:
        "Median_Blur":
        lambda lo, hi: iaa.MedianBlur(k=(lo, hi)),

        # Sharpen an image, then overlay the results with the original using an alpha between alpha_lo and alpha_hi:
        "Sharpen":
        lambda alpha_lo, alpha_hi, lightness_lo, lightness_hi: iaa.
        Sharpen(alpha=(alpha_lo, alpha_hi),
                lightness=(lightness_lo, lightness_hi)),

        # Emboss an image, then overlay the results with the original using an alpha between alpha_lo and alpha_hi:
        "Emboss":
        lambda alpha_lo, alpha_hi, strength_lo, strength_hi: iaa.Emboss(
            alpha=(alpha_lo, alpha_hi), strength=(strength_lo, strength_hi)),

        # Detect edges in images, turning them into black and white images and
        # then overlay these with the original images using random alphas between alpha_lo and alpha_hi:
        "Detect_Edges":
        lambda alpha_lo, alpha_hi: iaa.EdgeDetect(alpha=(alpha_lo, alpha_hi)),

        # Detect edges having random directions between dir_lo and dir_hi (i.e (0.0, 1.0) = 0 to 360 degrees) in
        # images, turning the images into black and white versions and then overlay these with the original images
        # using random alphas between alpha_lo and alpha_hi:
        "Directed_edge_Detect":
        lambda alpha_lo, alpha_hi, dir_lo, dir_hi: iaa.DirectedEdgeDetect(
            alpha=(alpha_lo, alpha_hi), direction=(dir_lo, dir_hi)),

        # Add random values between lo and hi to images. In percent of all images the values differ per channel
        # (3 sampled value). In the rest of the images the value is the same for all channels:
        "Add":
        lambda lo, hi, percent: iaa.Add((lo, hi), per_channel=percent),

        # Adds random values between lo and hi to images, with each value being sampled per pixel.
        # In percent of all images the values differ per channel (3 sampled value). In the rest of the images
        # the value is the same for all channels:
        "Add_Element_Wise":
        lambda lo, hi, percent: iaa.AddElementwise(
            (lo, hi), per_channel=percent),

        # Add gaussian noise (aka white noise) to an image, sampled once per pixel from a normal
        # distribution N(0, s), where s is sampled per image and varies between lo and hi*255 for percent of all
        # images (sampled once for all channels) and sampled three (RGB) times (channel-wise)
        # for the rest from the same normal distribution:
        "Additive_Gaussian_Noise":
        lambda lo, hi, percent: iaa.AdditiveGaussianNoise(scale=(lo, hi),
                                                          per_channel=percent),

        # Multiply in percent of all images each pixel with random values between lo and hi and multiply
        # the pixels in the rest of the images channel-wise,
        # i.e. sample one multiplier independently per channel and pixel:
        "Multiply":
        lambda lo, hi, percent: iaa.Multiply((lo, hi), per_channel=percent),

        # Multiply values of pixels with possibly different values for neighbouring pixels,
        # making each pixel darker or brighter. Multiply each pixel with a random value between lo and hi:
        "Multiply_Element_Wise":
        lambda lo, hi, percent: iaa.MultiplyElementwise(
            (0.5, 1.5), per_channel=0.5),

        # Augmenter that sets a certain fraction of pixels in images to zero.
        # Sample per image a value p from the range lo<=p<=hi and then drop p percent of all pixels in the image
        # (i.e. convert them to black pixels), but do this independently per channel in percent of all images
        "Dropout":
        lambda lo, hi, percent: iaa.Dropout(p=(lo, hi), per_channel=percent),

        # Augmenter that sets rectangular areas within images to zero.
        # Drop d_lo to d_hi percent of all pixels by converting them to black pixels,
        # but do that on a lower-resolution version of the image that has s_lo to s_hi percent of the original size,
        # Also do this in percent of all images channel-wise, so that only the information of some
        # channels is set to 0 while others remain untouched:
        "Coarse_Dropout":
        lambda d_lo, d_hi, s_lo, s_hi, percent: iaa.CoarseDropout(
            (d_lo, d_hi), size_percent=(s_hi, s_hi), per_channel=percent),

        # Augmenter that inverts all values in images, i.e. sets a pixel from value v to 255-v.
        # For c_percent of all images, invert all pixels in these images channel-wise with probability=i_percent
        # (per image). In the rest of the images, invert i_percent of all channels:
        "Invert":
        lambda i_percent, c_percent: iaa.Invert(i_percent,
                                                per_channel=c_percent),

        # Augmenter that changes the contrast of images.
        # Normalize contrast by a factor of lo to hi, sampled randomly per image
        # and for percent of all images also independently per channel:
        "Contrast_Normalisation":
        lambda lo, hi, percent: iaa.ContrastNormalization(
            (lo, hi), per_channel=percent),

        # Scale images to a value of lo to hi percent of their original size but do this independently per axis:
        "Scale":
        lambda x_lo, x_hi, y_lo, y_hi: iaa.Affine(scale={
            "x": (x_lo, x_hi),
            "y": (y_lo, y_hi)
        }),

        # Translate images by lo to hi percent on x-axis and y-axis independently:
        "Translate_Percent":
        lambda x_lo, x_hi, y_lo, y_hi: iaa.Affine(translate_percent={
            "x": (x_lo, x_hi),
            "y": (y_lo, y_hi)
        }),

        # Translate images by lo to hi pixels on x-axis and y-axis independently:
        "Translate_Pixels":
        lambda x_lo, x_hi, y_lo, y_hi: iaa.Affine(translate_px={
            "x": (x_lo, x_hi),
            "y": (y_lo, y_hi)
        }),

        # Rotate images by lo to hi degrees:
        "Rotate":
        lambda lo, hi: iaa.Affine(rotate=(lo, hi)),

        # Shear images by lo to hi degrees:
        "Shear":
        lambda lo, hi: iaa.Affine(shear=(lo, hi)),

        # Augmenter that places a regular grid of points on an image and randomly moves the neighbourhood of
        # these point around via affine transformations. This leads to local distortions.
        # Distort images locally by moving points around, each with a distance v (percent relative to image size),
        # where v is sampled per point from N(0, z) z is sampled per image from the range lo to hi:
        "Piecewise_Affine":
        lambda lo, hi: iaa.PiecewiseAffine(scale=(lo, hi)),

        # Augmenter to transform images by moving pixels locally around using displacement fields.
        # Distort images locally by moving individual pixels around following a distortions field with
        # strength sigma_lo to sigma_hi. The strength of the movement is sampled per pixel from the range
        # alpha_lo to alpha_hi:
        "Elastic_Transformation":
        lambda alpha_lo, alpha_hi, sigma_lo, sigma_hi: iaa.
        ElasticTransformation(alpha=(alpha_lo, alpha_hi),
                              sigma=(sigma_lo, sigma_hi)),

        # Weather augmenters are computationally expensive and will not work effectively on certain data sets

        # Augmenter to draw clouds in images.
        "Clouds":
        iaa.Clouds(),

        # Augmenter to draw fog in images.
        "Fog":
        iaa.Fog(),

        # Augmenter to add falling snowflakes to images.
        "Snowflakes":
        iaa.Snowflakes(),

        # Replaces percent of all pixels in an image by either x or y
        "Replace_Element_Wise":
        lambda percent, x, y: iaa.ReplaceElementwise(percent, [x, y]),

        # Adds laplace noise (somewhere between gaussian and salt and peeper noise) to an image, sampled once per pixel
        # from a laplace distribution Laplace(0, s), where s is sampled per image and varies between lo and hi*255 for
        # percent of all images (sampled once for all channels) and sampled three (RGB) times (channel-wise)
        # for the rest from the same laplace distribution:
        "Additive_Laplace_Noise":
        lambda lo, hi, percent: iaa.AdditiveLaplaceNoise(scale=(lo, hi),
                                                         per_channel=percent),

        # Adds poisson noise (similar to gaussian but different distribution) to an image, sampled once per pixel from
        # a poisson distribution Poisson(s), where s is sampled per image and varies between lo and hi for percent of
        # all images (sampled once for all channels) and sampled three (RGB) times (channel-wise)
        # for the rest from the same poisson distribution:
        "Additive_Poisson_Noise":
        lambda lo, hi, percent: iaa.AdditivePoissonNoise(lam=(lo, hi),
                                                         per_channel=percent),

        # Adds salt and pepper noise to an image, i.e. some white-ish and black-ish pixels.
        # Replaces percent of all pixels with salt and pepper noise
        "Salt_And_Pepper":
        lambda percent: iaa.SaltAndPepper(percent),

        # Adds coarse salt and pepper noise to image, i.e. rectangles that contain noisy white-ish and black-ish pixels
        # Replaces percent of all pixels with salt/pepper in an image that has lo to hi percent of the input image size,
        # then upscales the results to the input image size, leading to large rectangular areas being replaced.
        "Coarse_Salt_And_Pepper":
        lambda percent, lo, hi: iaa.CoarseSaltAndPepper(percent,
                                                        size_percent=(lo, hi)),

        # Adds salt noise to an image, i.e white-ish pixels
        # Replaces percent of all pixels with salt noise
        "Salt":
        lambda percent: iaa.Salt(percent),

        # Adds coarse salt noise to image, i.e. rectangles that contain noisy white-ish pixels
        # Replaces percent of all pixels with salt in an image that has lo to hi percent of the input image size,
        # then upscales the results to the input image size, leading to large rectangular areas being replaced.
        "Coarse_Salt":
        lambda percent, lo, hi: iaa.CoarseSalt(percent, size_percent=(lo, hi)),

        # Adds Pepper noise to an image, i.e Black-ish pixels
        # Replaces percent of all pixels with Pepper noise
        "Pepper":
        lambda percent: iaa.Pepper(percent),

        # Adds coarse pepper noise to image, i.e. rectangles that contain noisy black-ish pixels
        # Replaces percent of all pixels with salt in an image that has lo to hi percent of the input image size,
        # then upscales the results to the input image size, leading to large rectangular areas being replaced.
        "Coarse_Pepper":
        lambda percent, lo, hi: iaa.CoarsePepper(percent,
                                                 size_percent=(lo, hi)),

        # In an alpha blending, two images are naively mixed. E.g. Let A be the foreground image, B be the background
        # image and a is the alpha value. Each pixel intensity is then computed as a * A_ij + (1-a) * B_ij.
        # Images passed in must be a numpy array of type (height, width, channel)
        "Blend_Alpha":
        lambda image_fg, image_bg, alpha: iaa.blend_alpha(
            image_fg, image_bg, alpha),

        # Blur/Denoise an image using a bilateral filter.
        # Bilateral filters blur homogeneous and textured areas, while trying to preserve edges.
        # Blurs all images using a bilateral filter with max distance d_lo to d_hi with ranges for sigma_colour
        # and sigma space being define by sc_lo/sc_hi and ss_lo/ss_hi
        "Bilateral_Blur":
        lambda d_lo, d_hi, sc_lo, sc_hi, ss_lo, ss_hi: iaa.BilateralBlur(
            d=(d_lo, d_hi),
            sigma_color=(sc_lo, sc_hi),
            sigma_space=(ss_lo, ss_hi)),

        # Augmenter that sharpens images and overlays the result with the original image.
        # Create a motion blur augmenter with kernel size of (kernel x kernel) and a blur angle of either x or y degrees
        # (randomly picked per image).
        "Motion_Blur":
        lambda kernel, x, y: iaa.MotionBlur(k=kernel, angle=[x, y]),

        # Augmenter to apply standard histogram equalization to images (similar to CLAHE)
        "Histogram_Equalization":
        iaa.HistogramEqualization(),

        # Augmenter to perform standard histogram equalization on images, applied to all channels of each input image
        "All_Channels_Histogram_Equalization":
        iaa.AllChannelsHistogramEqualization(),

        # Contrast Limited Adaptive Histogram Equalization (CLAHE). This augmenter applies CLAHE to images, a form of
        # histogram equalization that normalizes within local image patches.
        # Creates a CLAHE augmenter with clip limit uniformly sampled from [cl_lo..cl_hi], i.e. 1 is rather low contrast
        # and 50 is rather high contrast. Kernel sizes of SxS, where S is uniformly sampled from [t_lo..t_hi].
        # Sampling happens once per image. (Note: more parameters are available for further specification)
        "CLAHE":
        lambda cl_lo, cl_hi, t_lo, t_hi: iaa.CLAHE(
            clip_limit=(cl_lo, cl_hi), tile_grid_size_px=(t_lo, t_hi)),

        # Contrast Limited Adaptive Histogram Equalization (refer above), applied to all channels of the input images.
        # CLAHE performs histogram equalization within image patches, i.e. over local neighbourhoods
        "All_Channels_CLAHE":
        lambda cl_lo, cl_hi, t_lo, t_hi: iaa.AllChannelsCLAHE(
            clip_limit=(cl_lo, cl_hi), tile_grid_size_px=(t_lo, t_hi)),

        # Augmenter that changes the contrast of images using a unique formula (using gamma).
        # Multiplier for gamma function is between lo and hi,, sampled randomly per image (higher values darken image)
        # For percent of all images values are sampled independently per channel.
        "Gamma_Contrast":
        lambda lo, hi, percent: iaa.GammaContrast(
            (lo, hi), per_channel=percent),

        # Augmenter that changes the contrast of images using a unique formula (linear).
        # Multiplier for linear function is between lo and hi, sampled randomly per image
        # For percent of all images values are sampled independently per channel.
        "Linear_Contrast":
        lambda lo, hi, percent: iaa.LinearContrast(
            (lo, hi), per_channel=percent),

        # Augmenter that changes the contrast of images using a unique formula (using log).
        # Multiplier for log function is between lo and hi, sampled randomly per image.
        # For percent of all images values are sampled independently per channel.
        # Values around 1.0 lead to a contrast-adjusted images. Values above 1.0 quickly lead to partially broken
        # images due to exceeding the datatype’s value range.
        "Log_Contrast":
        lambda lo, hi, percent: iaa.LogContrast((lo, hi), per_channel=percent),

        # Augmenter that changes the contrast of images using a unique formula (sigmoid).
        # Multiplier for sigmoid function is between lo and hi, sampled randomly per image. c_lo and c_hi decide the
        # cutoff value that shifts the sigmoid function in horizontal direction (Higher values mean that the switch
        # from dark to light pixels happens later, i.e. the pixels will remain darker).
        # For percent of all images values are sampled independently per channel:
        "Sigmoid_Contrast":
        lambda lo, hi, c_lo, c_hi, percent: iaa.SigmoidContrast(
            (lo, hi), (c_lo, c_hi), per_channel=percent),

        # Augmenter that calls a custom (lambda) function for each batch of input image.
        # Extracts Canny Edges from images (refer to description in CO)
        # Good default values for min and max are 100 and 200
        'Custom_Canny_Edges':
        lambda min_val, max_val: iaa.Lambda(func_images=CO.Edges(
            min_value=min_val, max_value=max_val)),
    }

    # AugmentationScheme objects require images and labels.
    # 'augs' is a list that contains all data augmentations in the scheme
    def __init__(self):
        self.augs = [iaa.Flipud(1)]

    def __call__(self, image):
        image = np.array(image)
        aug_scheme = iaa.Sometimes(
            0.5,
            iaa.SomeOf(random.randrange(1,
                                        len(self.augs) + 1),
                       self.augs,
                       random_order=True))
        aug_img = self.aug_scheme.augment_image(image)
        # fixes negative strides
        aug_img = aug_img[..., ::1] - np.zeros_like(aug_img)
        return aug_img