Exemplo n.º 1
0
def test_keys():
    reg = registry.Registry()

    with pytest.raises(KeyError, match="not registered"):
        reg.get("foobar")

    reg.register(key="foobar", value="fizzbuzz")
    assert reg.get("foobar") == "fizzbuzz"

    with pytest.raises(KeyError, match="Duplicate registration"):
        reg.register(key="foobar", value="fizzbuzz")
Exemplo n.º 2
0
def test_lazy():
    """Test indirect/lazy loading of registered values."""
    reg = registry.Registry()

    reg.register("nomodule", indirect="this.module.does.not.exist:foobar")
    with pytest.raises(ImportError):
        reg.get("nomodule")

    reg.register("noattribute", indirect="imitation:attr_does_not_exist")
    with pytest.raises(AttributeError):
        reg.get("noattribute")

    with pytest.raises(ValueError, match="exactly one of"):
        reg.register(key="wrongargs", value=3.14, indirect="math:pi")

    reg.register("exists", indirect="math:pi")
    val = reg.get("exists")
    import math

    assert val == math.pi
Exemplo n.º 3
0
import contextlib
import os
import pickle
from typing import Callable, ContextManager, Iterator, Optional, Type

import tensorflow as tf
from stable_baselines.common.base_class import BaseRLModel
from stable_baselines.common.policies import BasePolicy
from stable_baselines.common.vec_env import VecEnv, VecNormalize

from imitation.policies.base import RandomPolicy, ZeroPolicy
from imitation.util import registry

PolicyLoaderFn = Callable[[str, VecEnv], ContextManager[BasePolicy]]

policy_registry: registry.Registry[PolicyLoaderFn] = registry.Registry()


class NormalizePolicy(BasePolicy):
    """Wraps a policy, normalizing its input observations.

    `VecNormalize` normalizes observations to have zero mean and unit standard
    deviation. To do this, it collects statistics on the observations. We must
    restore these statistics when we load the policy, or we will be feeding
    observations in of a different scale to those the policy was trained with.

    It is convenient to do this when loading the policy, so users of a saved
    policy are not responsible for this implementation detail. WARNING: This
    trick will not work for fine-tuning / training policies.
    """
    def __init__(self, policy: BasePolicy, vec_normalize: VecNormalize):
Exemplo n.º 4
0
from typing import Callable

import numpy as np
import torch as th
from stable_baselines3.common.vec_env import VecEnv

from imitation.rewards import common
from imitation.util import registry, util

# TODO(sam): I suspect this whole file can be replaced with th.load calls. Try
# that refactoring once I have things running.

RewardFnLoaderFn = Callable[[str, VecEnv], common.RewardFn]

reward_registry: registry.Registry[RewardFnLoaderFn] = registry.Registry()


def _load_discrim_net(path: str, venv: VecEnv) -> common.RewardFn:
    """Load test reward output from discriminator."""
    del venv  # Unused.
    discriminator = th.load(path)
    # TODO(gleave): expose train reward as well? (hard due to action probs?)
    return discriminator.predict_reward_test


def _load_reward_net_as_fn(shaped: bool) -> RewardFnLoaderFn:
    def loader(path: str, venv: VecEnv) -> common.RewardFn:
        """Load train (shaped) or test (not shaped) reward from path."""
        del venv  # Unused.
        net = th.load(str(path))
Exemplo n.º 5
0
"""Load serialized reward functions of different types."""

import contextlib
from typing import Callable, ContextManager, Iterator

import numpy as np
from stable_baselines.common.vec_env import VecEnv

from imitation.rewards import discrim_net, reward_net
from imitation.util import registry, util
from imitation.util.reward_wrapper import RewardFn

RewardLoaderFn = Callable[[str, VecEnv], ContextManager[RewardFn]]
RewardNetLoaderFn = Callable[[str, VecEnv], reward_net.RewardNet]

reward_net_registry: registry.Registry[RewardNetLoaderFn] = registry.Registry()
reward_fn_registry: registry.Registry[RewardLoaderFn] = registry.Registry()


def _add_reward_net_loaders(classes):
    for name, cls in classes.items():
        loader = registry.build_loader_fn_require_path(cls.load)
        reward_net_registry.register(key=name, value=loader)


REWARD_NETS = {
    "BasicRewardNet": reward_net.BasicRewardNet,
    "BasicShapedRewardNet": reward_net.BasicShapedRewardNet,
}
_add_reward_net_loaders(REWARD_NETS)