Exemplo n.º 1
0
    def test(self):

        path = EnvironmentSettings.tmp_test_path / "integration_sequence_classification/"
        dataset = RandomDatasetGenerator.generate_sequence_dataset(50, {4: 1}, {'l1': {1: 0.5, 2: 0.5}}, path / 'data')

        os.environ["cache_type"] = "test"
        encoder_params = {
            "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
            "reads": ReadsType.UNIQUE.name,
            "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
            "sequence_type": SequenceType.AMINO_ACID.name,
            "k": 3
        }

        hp_setting = HPSetting(encoder=KmerFrequencyEncoder.build_object(dataset, **encoder_params), encoder_params=encoder_params,
                               ml_method=LogisticRegression(), ml_params={"model_selection_cv": False, "model_selection_n_folds": -1},
                               preproc_sequence=[])

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])

        instruction = TrainMLModelInstruction(dataset, GridSearch([hp_setting]), [hp_setting],
                                              SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
                                              SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
                                              {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, lc, path)

        result = instruction.run(result_path=path)

        shutil.rmtree(path)
Exemplo n.º 2
0
    def _create_report(self, path):
        report = ConfounderAnalysis.build_object(
            metadata_labels=["age", "HLA"], name='test')

        report.ml_details_path = path / "ml_details.yaml"
        report.label = Label("disease")
        report.result_path = path
        encoder = KmerFrequencyEncoder.build_object(
            RepertoireDataset(), **{
                "normalization_type":
                NormalizationType.RELATIVE_FREQUENCY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
                "k": 3,
                'sequence_type': SequenceType.AMINO_ACID.name
            })
        report.train_dataset = self._encode_dataset(
            encoder, self._make_dataset(path / "train", size=100), path)
        report.test_dataset = self._encode_dataset(encoder,
                                                   self._make_dataset(path /
                                                                      "test",
                                                                      size=40),
                                                   path,
                                                   learn_model=False)
        report.method = self._create_dummy_lr_model(
            path, report.train_dataset.encoded_data, Label("disease"))

        return report
Exemplo n.º 3
0
def encode_dataset_by_kmer_freq(path_to_dataset_directory: str, result_path: str, metadata_path: str = None):
    """
    encodes the repertoire dataset using KmerFrequencyEncoder

    Arguments:
        path_to_dataset_directory (str): path to directory containing all repertoire files with .tsv extension in MiXCR format
        result_path (str): where to store the results
        metadata_path(str): csv file with columns "filename", "subject_id", "disease" which is filled by default if value of argument is None,
            otherwise any metadata csv file passed to the function, must include filename and subject_id columns, and an arbitrary disease column
    Returns:
         encoded dataset with encoded data in encoded_dataset.encoded_data.examples
    """
    path_to_dataset_directory = Path(path_to_dataset_directory)
    result_path = Path(result_path)

    if metadata_path is None:
        metadata_path = generate_random_metadata(path_to_dataset_directory, result_path)
    else:
        metadata_path = Path(metadata_path)

    loader = MiXCRImport()
    dataset = loader.import_dataset({
        "is_repertoire": True,
        "path": path_to_dataset_directory,
        "metadata_file": metadata_path,
        "region_type": "IMGT_CDR3",  # import_dataset in only cdr3
        "number_of_processes": 4,  # number of parallel processes for loading the data
        "result_path": result_path,
        "separator": "\t",
        "columns_to_load": ["cloneCount", "allVHitsWithScore", "allJHitsWithScore", "aaSeqCDR3", "nSeqCDR3"],
        "column_mapping": {
            "cloneCount": "counts",
            "allVHitsWithScore": "v_alleles",
            "allJHitsWithScore": "j_alleles"
        },
    }, "mixcr_dataset")

    label_name = list(dataset.labels.keys())[0]  # label that can be used for ML prediction - by default: "disease" with values True/False

    encoded_dataset = DataEncoder.run(DataEncoderParams(dataset, KmerFrequencyEncoder.build_object(dataset, **{
        "normalization_type": "relative_frequency",  # encode repertoire by the relative frequency of k-mers in repertoire
        "reads": "unique",  # count each sequence only once, do not use clonal count
        "k": 2,  # k-mer length
        "sequence_type": "amino_acid",
        "sequence_encoding": "continuous_kmer"  # split each sequence in repertoire to overlapping k-mers
    }), EncoderParams(result_path=result_path,
                      label_config=LabelConfiguration([Label(label_name, dataset.labels[label_name])]))))

    dataset_exporter = DesignMatrixExporter(dataset=encoded_dataset,
                                            result_path=result_path / "csv_exported", file_format='csv')
    dataset_exporter.generate_report()

    return encoded_dataset
 def _encode_dataset(self, dataset, path, learn_model: bool = True):
     encoder = KmerFrequencyEncoder.build_object(dataset, **{
         "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
         "reads": ReadsType.UNIQUE.name,
         "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
         "k": 3,
         'sequence_type': SequenceType.AMINO_ACID.name
     })  # encodes the repertoire by frequency of 3-mers
     lc = LabelConfiguration()
     lc.add_label("disease", [True, False])
     encoded_dataset = encoder.encode(dataset, EncoderParams(
         result_path=path / "encoded",
         label_config=lc,
         learn_model=learn_model,
         model={}
     ))
     return encoded_dataset
    def test(self):

        path = EnvironmentSettings.tmp_test_path / "integration_receptor_classification/"
        dataset = self.create_dataset(path)

        os.environ["cache_type"] = "test"

        encoder_params = {
            "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
            "reads": ReadsType.UNIQUE.name,
            "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
            "sequence_type": SequenceType.AMINO_ACID.name,
            "k": 3
        }

        hp_setting = HPSetting(encoder=KmerFrequencyEncoder.build_object(
            dataset, **encoder_params),
                               encoder_params=encoder_params,
                               ml_method=LogisticRegression(),
                               ml_params={
                                   "model_selection_cv": False,
                                   "model_selection_n_folds": -1
                               },
                               preproc_sequence=[])

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])

        instruction = TrainMLModelInstruction(
            dataset, GridSearch([hp_setting]), [hp_setting],
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, lc, path)

        state = instruction.run(result_path=path)
        print(vars(state))

        self.assertEqual(
            1.0, state.assessment_states[0].label_states["l1"].
            optimal_assessment_item.performance[
                state.optimization_metric.name.lower()])

        shutil.rmtree(path)
    def test_encode(self):
        path = EnvironmentSettings.root_path / "test/tmp/kmerfreqenc/"

        PathBuilder.build(path)

        rep1 = Repertoire.build_from_sequence_objects([
            ReceptorSequence("AAA", identifier="1"),
            ReceptorSequence("ATA", identifier="2"),
            ReceptorSequence("ATA", identifier='3')
        ],
                                                      metadata={
                                                          "l1": 1,
                                                          "l2": 2,
                                                          "subject_id": "1"
                                                      },
                                                      path=path)

        rep2 = Repertoire.build_from_sequence_objects([
            ReceptorSequence("ATA", identifier="1"),
            ReceptorSequence("TAA", identifier="2"),
            ReceptorSequence("AAC", identifier="3")
        ],
                                                      metadata={
                                                          "l1": 0,
                                                          "l2": 3,
                                                          "subject_id": "2"
                                                      },
                                                      path=path)

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])
        lc.add_label("l2", [0, 3])

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        encoder = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type":
                NormalizationType.RELATIVE_FREQUENCY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.IDENTITY.name,
                "k": 3
            })

        d1 = encoder.encode(
            dataset,
            EncoderParams(result_path=path / "1/",
                          label_config=lc,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        encoder = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type":
                NormalizationType.RELATIVE_FREQUENCY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
                "k": 3
            })

        d2 = encoder.encode(
            dataset,
            EncoderParams(result_path=path / "2/",
                          label_config=lc,
                          pool_size=2,
                          learn_model=True,
                          model={},
                          filename="dataset.csv"))

        encoder3 = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type": NormalizationType.BINARY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
                "k": 3
            })

        d3 = encoder3.encode(
            dataset,
            EncoderParams(result_path=path / "3/",
                          label_config=lc,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        shutil.rmtree(path)

        self.assertTrue(isinstance(d1, RepertoireDataset))
        self.assertTrue(isinstance(d2, RepertoireDataset))
        self.assertEqual(0.67, np.round(d2.encoded_data.examples[0, 2], 2))
        self.assertEqual(0.0, np.round(d3.encoded_data.examples[0, 1], 2))
        self.assertTrue(isinstance(encoder, KmerFrequencyEncoder))