Exemplo n.º 1
0
    def make_html_map(state: ExploratoryAnalysisState,
                      base_path: Path) -> dict:
        html_map = {
            "css_style":
            Util.get_css_content(ExploratoryAnalysisHTMLBuilder.CSS_PATH),
            "full_specs":
            Util.get_full_specs_path(base_path),
            'immuneML_version':
            MLUtil.get_immuneML_version(),
            "analyses": [{
                "name":
                name,
                "dataset_name":
                analysis.dataset.name if analysis.dataset.name is not None else
                analysis.dataset.identifier,
                "dataset_type":
                StringHelper.camel_case_to_word_string(
                    type(analysis.dataset).__name__),
                "example_count":
                analysis.dataset.get_example_count(),
                "dataset_size":
                f"{analysis.dataset.get_example_count()} {type(analysis.dataset).__name__.replace('Dataset', 's').lower()}",
                "show_labels":
                analysis.label_config is not None
                and len(analysis.label_config.get_labels_by_name()) > 0,
                "labels": [{
                    "name": label.name,
                    "values": str(label.values)[1:-1]
                } for label in analysis.label_config.get_label_objects()]
                if analysis.label_config else None,
                "encoding_key":
                analysis.encoder.name
                if analysis.encoder is not None else None,
                "encoding_name":
                StringHelper.camel_case_to_word_string(
                    type(analysis.encoder).__name__)
                if analysis.encoder is not None else None,
                "encoding_params": [{
                    "param_name": key,
                    "param_value": value
                } for key, value in vars(analysis.encoder).items()]
                if analysis.encoder is not None else None,
                "show_encoding":
                analysis.encoder is not None,
                "report":
                Util.to_dict_recursive(analysis.report_result, base_path)
            } for name, analysis in state.exploratory_analysis_units.items()]
        }

        for analysis in html_map["analyses"]:
            analysis["show_tables"] = len(
                analysis["report"]["output_tables"]
            ) > 0 if "output_tables" in analysis["report"] else False
            analysis["show_text"] = len(
                analysis["report"]["output_text"]
            ) > 0 if "output_text" in analysis["report"] else False

        return html_map
Exemplo n.º 2
0
 def make_html_map(state: MLApplicationState, base_path: Path) -> dict:
     return {
         "css_style":
         Util.get_css_content(MLApplicationHTMLBuilder.CSS_PATH),
         "hp_setting":
         state.hp_setting.get_key(),
         'immuneML_version':
         MLUtil.get_immuneML_version(),
         "label":
         state.label_config.get_labels_by_name()[0],
         "dataset_name":
         state.dataset.name,
         "dataset_type":
         StringHelper.camel_case_to_word_string(
             type(state.dataset).__name__),
         "example_count":
         state.dataset.get_example_count(),
         "dataset_size":
         f"{state.dataset.get_example_count()} {type(state.dataset).__name__.replace('Dataset', 's').lower()}",
         "labels": [{
             "name":
             label_name,
             "values":
             str(state.label_config.get_label_values(label_name))[1:-1]
         } for label_name in state.label_config.get_labels_by_name()],
         "predictions":
         Util.get_table_string_from_csv(state.predictions_path),
         "predictions_download_link":
         os.path.relpath(state.predictions_path, base_path)
     }
Exemplo n.º 3
0
    def make_html_map(state: DatasetExportState, base_path: Path) -> dict:
        html_map = {
            "css_style":
            Util.get_css_content(DatasetExportHTMLBuilder.CSS_PATH),
            "name":
            state.name,
            'immuneML_version':
            MLUtil.get_immuneML_version(),
            "full_specs":
            Util.get_full_specs_path(base_path),
            "datasets": [{
                "dataset_name":
                dataset.name,
                "dataset_type":
                StringHelper.camel_case_to_word_string(type(dataset).__name__),
                "dataset_size":
                f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}",
                "labels": [{
                    "label_name": label
                } for label in dataset.get_label_names()],
                "formats": [{
                    "format_name":
                    format_name,
                    "dataset_download_link":
                    os.path.relpath(path=Util.make_downloadable_zip(
                        state.result_path,
                        state.paths[dataset.name][format_name]),
                                    start=base_path)
                } for format_name in state.formats]
            } for dataset in state.datasets]
        }

        return html_map
Exemplo n.º 4
0
    def make_html_map(state: DatasetExportState, base_path: Path) -> dict:
        html_map = {
            "css_style": Util.get_css_content(DatasetExportHTMLBuilder.CSS_PATH),
            "name": state.name,
            'immuneML_version': MLUtil.get_immuneML_version(),
            "full_specs": Util.get_full_specs_path(base_path),
            "datasets": [
                {
                    "dataset_name": dataset.name,
                    "dataset_type": StringHelper.camel_case_to_word_string(type(dataset).__name__),
                    "dataset_size": f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}",
                    "labels": [{"label_name": label} for label in dataset.get_label_names()],
                    "preprocessing_sequence": [
                        {
                            "preprocessing_name": preprocessing.__class__.__name__,
                            "preprocessing_params": ", ".join([f"{key}: {value}" for key, value in vars(preprocessing).items()])
                        } for preprocessing in state.preprocessing_sequence
                    ] if state.preprocessing_sequence is not None else [],
                    "show_preprocessing": state.preprocessing_sequence is not None and len(state.preprocessing_sequence) > 0,
                    "formats": [
                        {
                            "format_name": format_name,
                            "dataset_download_link": os.path.relpath(path=Util.make_downloadable_zip(state.result_path, state.paths[dataset.name][format_name]),
                                                                     start=base_path)
                        } for format_name in state.formats
                    ]
                } for dataset in state.datasets
            ]
        }

        return html_map
Exemplo n.º 5
0
    def _make_main_html_map(state: TrainMLModelState, base_path: Path) -> dict:
        html_map = {
            "css_style":
            Util.get_css_content(HPHTMLBuilder.CSS_PATH),
            "full_specs":
            Util.get_full_specs_path(base_path),
            "dataset_name":
            state.dataset.name
            if state.dataset.name is not None else state.dataset.identifier,
            "dataset_type":
            StringHelper.camel_case_to_word_string(
                type(state.dataset).__name__),
            "example_count":
            state.dataset.get_example_count(),
            "dataset_size":
            f"{state.dataset.get_example_count()} {type(state.dataset).__name__.replace('Dataset', 's').lower()}",
            "labels": [{
                "name": label.name,
                "values": str(label.values)[1:-1]
            } for label in state.label_configuration.get_label_objects()],
            "optimization_metric":
            state.optimization_metric.name.lower(),
            "other_metrics":
            str([metric.name.lower()
                 for metric in state.metrics])[1:-1].replace("'", ""),
            "metrics": [{
                "name": metric.name.lower()
            } for metric in state.metrics],
            "assessment_desc":
            state.assessment,
            "selection_desc":
            state.selection,
            "show_hp_reports":
            bool(state.report_results),
            'hp_reports':
            Util.to_dict_recursive(state.report_results, base_path)
            if state.report_results else None,
            "hp_per_label":
            HPHTMLBuilder._make_hp_per_label(state),
            'models_per_label':
            HPHTMLBuilder._make_model_per_label(state, base_path),
            'immuneML_version':
            MLUtil.get_immuneML_version()
        }

        return html_map
Exemplo n.º 6
0
    def make_html_map(state: SimulationState, base_path: Path) -> dict:

        html_map = {
            "css_style":
            Util.get_css_content(SimulationHTMLBuilder.CSS_PATH),
            "name":
            state.name,
            'immuneML_version':
            MLUtil.get_immuneML_version(),
            "full_specs":
            Util.get_full_specs_path(base_path),
            "dataset_name":
            state.resulting_dataset.name if state.resulting_dataset.name
            is not None else state.resulting_dataset.identifier,
            "dataset_type":
            StringHelper.camel_case_to_word_string(
                type(state.resulting_dataset).__name__),
            "example_count":
            state.resulting_dataset.get_example_count(),
            "dataset_size":
            f"{state.resulting_dataset.get_example_count()} {type(state.resulting_dataset).__name__.replace('Dataset', 's').lower()}",
            "labels": [{
                "label_name": label
            } for label in state.resulting_dataset.get_label_names()],
            "formats": [{
                "format_name":
                format_name,
                "dataset_download_link":
                os.path.relpath(path=Util.make_downloadable_zip(
                    state.result_path,
                    state.paths[state.resulting_dataset.name][format_name]),
                                start=base_path)
            } for format_name in state.formats],
            "implantings": [
                Util.to_dict_recursive(implanting, base_path)
                for implanting in state.simulation.implantings
            ]
        }

        return html_map
Exemplo n.º 7
0
    def make_html_map(state: SubsamplingState, base_path: Path) -> dict:
        html_map = {
            "css_style":
            Util.get_css_content(SubsamplingHTMLBuilder.CSS_PATH),
            "name":
            state.name,
            'immuneML_version':
            MLUtil.get_immuneML_version(),
            "full_specs":
            Util.get_full_specs_path(base_path),
            "dataset_name":
            state.dataset.name
            if state.dataset.name is not None else state.dataset.identifier,
            "labels": [{
                "label_name": label
            } for label in state.dataset.get_label_names()],
            "dataset_type":
            StringHelper.camel_case_to_word_string(
                type(state.dataset).__name__),
            "example_count":
            state.dataset.get_example_count(),
            "subsampled_datasets": [{
                "sub_dataset_iter":
                i,
                "sub_dataset_name":
                dataset.name,
                "dataset_size":
                f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}",
                "formats": [{
                    "dataset_download_link": item,
                    "format_name": key
                } for key, item in state.subsampled_dataset_paths[
                    dataset.name].items()]
            } for i, dataset in enumerate(state.subsampled_datasets, 1)]
        }

        return html_map
Exemplo n.º 8
0
 def test_camel_case_to_words(self):
     self.assertEqual(["Repertoire", "Dataset"],
                      StringHelper.camel_case_to_words("RepertoireDataset"))
     self.assertEqual(["Repertoire", "Dataset"],
                      StringHelper.camel_case_to_words("repertoireDataset"))