def test_below_threshold(self):
     """Test an example where the points below the specified threshold
     are regarded as significant."""
     expected = np.array(
         [
             [
                 [1.0, 1.0, 1.0, 1.0],
                 [1.0, 1.0, 1.0, 1.0],
                 [0.0, 1.0, 0.0, 0.0],
                 [1.0, 0.0, 0.0, 0.0],
             ]
         ]
     )
     comparison_operator = "<="
     lower_threshold = 5 * mm_hr_to_m_s
     higher_threshold = 0.001 * mm_hr_to_m_s
     cubelist = iris.cube.CubeList([self.cube, self.cube])
     result = DiagnoseConvectivePrecipitation(
         lower_threshold,
         higher_threshold,
         self.neighbourhood_method,
         self.radii,
         comparison_operator=comparison_operator,
     ).iterate_over_threshold(cubelist, self.higher_threshold)
     self.assertIsInstance(result, iris.cube.CubeList)
     self.assertArrayAlmostEqual(result[0].data, expected)
     self.assertArrayAlmostEqual(result[1].data, expected)
Exemplo n.º 2
0
 def test_2d_input_cube(self):
     """Test that the sum of differences between adjacent grid squares,
     when accounting for the offset between the grid of the difference
     cube and the original grid is as expected for a 2d cube."""
     expected = np.array([
         [0.0, 2.0, 1.0, 0.0],
         [2.0, 2.0, 0.0, 1.0],
         [1.0, 2.0, 3.0, 3.0],
         [1.0, 2.0, 1.0, 1.0],
     ])
     cube = self.cube[0, :, :]
     # Set up threshold_cube_x.
     threshold_cube_x_data = np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0],
                                       [0.0, 1.0, 1.0], [1.0, 0.0, 0.0]])
     threshold_cube_x = cube.copy()
     threshold_cube_x = threshold_cube_x[:, :-1]
     threshold_cube_x.data = threshold_cube_x_data
     # Set up threshold_cube_y.
     threshold_cube_y_data = np.array([[0.0, 1.0, 0.0, 0.0],
                                       [1.0, 0.0, 0.0, 1.0],
                                       [0.0, 1.0, 1.0, 1.0]])
     threshold_cube_y = cube.copy()
     threshold_cube_y = threshold_cube_y[:-1, :]
     threshold_cube_y.data = threshold_cube_y_data
     thresholded_cube = iris.cube.CubeList(
         [threshold_cube_x, threshold_cube_y])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     ).sum_differences_between_adjacent_grid_squares(
         cube, thresholded_cube)
     self.assertIsInstance(result, iris.cube.Cube)
     self.assertArrayAlmostEqual(result.data, expected)
 def test_basic(self):
     """Test that differences are calculated correctly between adjacent
     grid squares along x and y. Check that absolute values are returned."""
     expected_x = np.array(
         [
             [
                 [0.000000e00, 5.555600e-07, 5.555600e-07],
                 [0.000000e00, 0.000000e00, 0.000000e00],
                 [2.222240e-06, 2.222240e-06, 0.000000e00],
                 [4.444480e-06, 0.000000e00, 0.000000e00],
             ]
         ]
     )
     expected_y = np.array(
         [
             [
                 [5.555600e-07, 5.555600e-07, 1.111120e-06, 5.555600e-07],
                 [1.111120e-06, 1.111120e-06, 1.111120e-06, 1.111120e-06],
                 [2.222240e-06, 4.444480e-06, 2.222240e-06, 2.222240e-06],
             ]
         ]
     )
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     ).absolute_differences_between_adjacent_grid_squares(self.cube)
     self.assertIsInstance(result, iris.cube.CubeList)
     self.assertArrayAlmostEqual(result[0].data, expected_x)
     self.assertArrayAlmostEqual(result[1].data, expected_y)
Exemplo n.º 4
0
 def test_basic(self):
     """Test that the __repr__ returns the expected string."""
     lower_threshold = 0.001 * mm_hr_to_m_s
     higher_threshold = 5 * mm_hr_to_m_s
     neighbourhood_method = "square"
     radii = 2000.0
     result = str(
         DiagnoseConvectivePrecipitation(lower_threshold, higher_threshold,
                                         neighbourhood_method, radii))
     msg = ("<DiagnoseConvectivePrecipitation: lower_threshold 2.7778e-10; "
            "higher_threshold 1.3889e-06; neighbourhood_method: square; "
            "radii: 2000.0; fuzzy_factor None; comparison_operator: >; "
            "lead_times: None; weighted_mode: True;"
            "use_adjacent_grid_square_differences: True>")
     self.assertEqual(str(result), msg)
Exemplo n.º 5
0
 def test_catch_infinity_values(self):
     """Test an example where the infinity values are generated.
     Ensure these are caught as intended."""
     lower_threshold = 5 * mm_hr_to_m_s
     higher_threshold = 0.001 * mm_hr_to_m_s
     cubelist = lower_higher_threshold_cubelist(self.cube, lower_threshold,
                                                higher_threshold)
     msg = "A value of infinity was found"
     with self.assertRaisesRegex(ValueError, msg):
         DiagnoseConvectivePrecipitation(
             self.lower_threshold,
             self.higher_threshold,
             self.neighbourhood_method,
             self.radii,
         )._calculate_convective_ratio(cubelist, self.threshold_list)
Exemplo n.º 6
0
 def test_circular_neighbourhood(self):
     """Test a circular neighbourhood."""
     expected = np.array([[
         [0.0, 0.0, np.nan, 0.0],
         [0.0, 0.0, 0.0, 0.0],
         [1.0, np.nan, 1.0, 1.0],
         [np.nan, 1.0, 1.0, 1.0],
     ]])
     neighbourhood_method = "circular"
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         neighbourhood_method,
         self.radii,
     )._calculate_convective_ratio(self.cubelist, self.threshold_list)
     self.assertArrayAlmostEqual(result, expected)
Exemplo n.º 7
0
 def test_no_precipitation(self):
     """If there is no precipitation, then the convective ratio will try
     to do a 0/0 division, which will result in NaN values. Check that
     the output array works as intended."""
     cube = set_up_precipitation_rate_cube()
     cube.data = np.zeros(cube.shape)
     expected = np.full(cube.shape, np.nan)
     cubelist = lower_higher_threshold_cubelist(cube, self.lower_threshold,
                                                self.higher_threshold)
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     )._calculate_convective_ratio(cubelist, self.threshold_list)
     self.assertArrayAlmostEqual(result, expected)
Exemplo n.º 8
0
 def test_use_adjacent_grid_square_differences(self):
     """Diagnose convective precipitation using the differences between
     adjacent grid squares."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.357143, 0.318182, 0.272727, 0.214286],
         [0.6, 0.571429, 0.526316, 0.454545],
         [0.818182, 0.8, 0.769231, 0.714286],
     ]])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     ).process(self.cube)
     self.assertIsInstance(result, iris.cube.Cube)
     self.assertArrayAlmostEqual(result.data, expected)
Exemplo n.º 9
0
 def test_basic(self):
     """Test an example for iterating over a list of thresholds."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.0, 0.0, 0.0, 0.0],
         [1.0, 0.0, 1.0, 1.0],
         [0.0, 1.0, 1.0, 1.0],
     ]])
     cubelist = iris.cube.CubeList([self.cube, self.cube])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     ).iterate_over_threshold(cubelist, self.higher_threshold)
     self.assertIsInstance(result, iris.cube.CubeList)
     self.assertArrayAlmostEqual(result[0].data, expected)
Exemplo n.º 10
0
 def test_basic(self):
     """Test a basic example using the default values for the keyword
     arguments. Make sure that the output is a cube with the expected
     data."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.2, 0.28571429, 0.28571429, 0.4],
         [0.5, 0.57142857, 0.625, 0.66666667],
         [1.0, 1.0, 1.0, 1.0],
     ]])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
     )._calculate_convective_ratio(self.cubelist, self.threshold_list)
     self.assertArrayAlmostEqual(result, expected)
Exemplo n.º 11
0
 def test_does_not_use_adjacent_grid_square_differences(self):
     """Diagnose convective precipitation using the precipitation rate
     field directly, rather than calculating differences between adjacent
     grid squares."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.2, 0.28571429, 0.28571429, 0.4],
         [0.5, 0.57142857, 0.625, 0.66666667],
         [1.0, 1.0, 1.0, 1.0],
     ]])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
         use_adjacent_grid_square_differences=False,
     ).process(self.cube)
     self.assertIsInstance(result, iris.cube.Cube)
     self.assertArrayAlmostEqual(result.data, expected)
Exemplo n.º 12
0
 def test_circular_neighbourhood_weighted_mode(self):
     """Test a circular neighbourhood with the weighted_mode
     set to True."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.2, 0.0, 0.25, 0.2],
         [0.666667, 0.75, 0.75, 0.8],
         [1.0, 1.0, 1.0, 1.0],
     ]])
     neighbourhood_method = "circular"
     weighted_mode = False
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         neighbourhood_method,
         self.radii,
         weighted_mode=weighted_mode,
     )._calculate_convective_ratio(self.cubelist, self.threshold_list)
     self.assertArrayAlmostEqual(result, expected)
Exemplo n.º 13
0
 def test_fuzzy_factor(self):
     """Test an example where a fuzzy_factor is specified."""
     expected = np.array([[
         [0.0, 0.0, 0.0, 0.0],
         [0.166667, 0.166667, 0.166667, 0.166667],
         [1.0, 0.0, 1.0, 1.0],
         [0.0, 1.0, 1.0, 1.0],
     ]])
     fuzzy_factor = 0.7
     cubelist = iris.cube.CubeList([self.cube, self.cube])
     result = DiagnoseConvectivePrecipitation(
         self.lower_threshold,
         self.higher_threshold,
         self.neighbourhood_method,
         self.radii,
         fuzzy_factor=fuzzy_factor,
     ).iterate_over_threshold(cubelist, self.higher_threshold)
     self.assertIsInstance(result, iris.cube.CubeList)
     self.assertArrayAlmostEqual(result[0].data, expected, decimal=4)
     self.assertArrayAlmostEqual(result[1].data, expected, decimal=4)
Exemplo n.º 14
0
    def test_multiple_lead_times_neighbourhooding(self):
        """Test where neighbourhood is applied for multiple lead times, where
        different radii are applied at each lead time."""
        expected = np.array([[
            [
                [0.25, 0.166667, 0.166667, 0.0],
                [0.166667, 0.11111111, 0.11111111, 0.0],
                [0.166667, 0.11111111, 0.11111111, 0.0],
                [0.0, 0.0, 0.0, 0.0],
            ],
            [
                [0.1111111, 0.0833333, 0.0833333, 0.1111111],
                [0.0833333, 0.0625, 0.0625, 0.0833333],
                [0.0833333, 0.0625, 0.0625, 0.0833333],
                [0.1111111, 0.0833333, 0.0833333, 0.1111111],
            ],
        ]])

        # Set up a cube with 3 and 6 hour forecast periods
        precip = set_up_variable_cube(
            np.ones((1, 4, 4), dtype=np.float32),
            "lwe_precipitation_rate",
            "mm h-1",
            "equalarea",
            time=datetime.datetime(2015, 11, 19, 3),
            frt=datetime.datetime(2015, 11, 19, 0),
        )
        precip = add_coordinate(
            precip,
            [
                datetime.datetime(2015, 11, 19, 3),
                datetime.datetime(2015, 11, 19, 6)
            ],
            "time",
            order=[1, 0, 2, 3],
            is_datetime=True,
        )
        coord_points = np.array([0.0, 2000.0, 4000.0, 6000.0])
        precip.coord("projection_y_coordinate").points = coord_points
        precip.coord("projection_x_coordinate").points = coord_points

        data = np.full((1, 2, 4, 4), 1.0)
        data[0, 0, 1, 1] = 20.0
        data[0, 1, 1, 1] = 20.0
        precip.data = data.astype(np.float32)
        precip.convert_units("m s-1")

        cubelist = lower_higher_threshold_cubelist(precip,
                                                   self.lower_threshold,
                                                   self.higher_threshold)

        lead_times = [3, 6]
        radii = [2000.0, 4000.0]
        result = DiagnoseConvectivePrecipitation(
            self.lower_threshold,
            self.higher_threshold,
            self.neighbourhood_method,
            radii=radii,
            lead_times=lead_times,
        )._calculate_convective_ratio(cubelist, self.threshold_list)
        self.assertArrayAlmostEqual(result, expected)