def export_visual(name, annot, segm, img, path_out, drop_labels, segm_alpha=1.):
    """ given visualisation of segmented image and annotation

    :param dict df_row:
    :param str path_out: path to the visualisation directory
    :param [int] drop_labels: whether skip some labels
    """
    # relabel for simpler visualisations of class differences
    if np.sum(annot < 0) > 0:
        annot[annot < 0] = -1
        _, lut, _ = relabel_sequential(annot + 1)
        lut = fill_lut(lut, segm, offset=1)
        annot = lut[annot.astype(int) + 1] - 1
        segm = lut[segm.astype(int) + 1] - 1
    else:
        annot, lut, _ = relabel_sequential(annot)
        lut = fill_lut(lut, segm, offset=0)
        segm = lut[segm.astype(int)]

    # normalise alpha in range (0, 1)
    segm_alpha = tl_visu.norm_aplha(segm_alpha)

    fig = tl_visu.figure_overlap_annot_segm_image(annot, segm, img,
                                                  drop_labels=drop_labels,
                                                  segm_alpha=segm_alpha)
    logging.debug('>> exporting -> %s', name)
    fig.savefig(os.path.join(path_out, '%s.png' % name))
    plt.close(fig)
Exemplo n.º 2
0
def visualise_overlap(
    path_img,
    path_seg,
    path_out,
    b_img_scale=BOOL_IMAGE_RESCALE_INTENSITY,
    b_img_contour=BOOL_SAVE_IMAGE_CONTOUR,
    b_relabel=BOOL_ANNOT_RELABEL,
    segm_alpha=MIDDLE_ALPHA_OVERLAP,
):
    img, _ = tl_data.load_image_2d(path_img)
    seg, _ = tl_data.load_image_2d(path_seg)

    # normalise alpha in range (0, 1)
    segm_alpha = tl_visu.norm_aplha(segm_alpha)

    if b_relabel:
        seg, _, _ = segmentation.relabel_sequential(seg.copy())

    if img.ndim == 2:  # for gray images of ovary
        img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)

    if b_img_scale:
        p_low, p_high = np.percentile(img, q=(3, 98))
        # plt.imshow(255 - img, cmap='Greys')
        img = exposure.rescale_intensity(img,
                                         in_range=(p_low, p_high),
                                         out_range='uint8')

    if b_img_contour:
        path_im_visu = os.path.splitext(path_out)[0] + '_contour.png'
        img_contour = segmentation.mark_boundaries(img[:, :, :3],
                                                   seg,
                                                   color=COLOR_CONTOUR,
                                                   mode='subpixel')
        plt.imsave(path_im_visu, img_contour)
    # else:  # for colour images of disc
    #     mask = (np.sum(img, axis=2) == 0)
    #     img[mask] = [255, 255, 255]

    fig = tl_visu.figure_image_segm_results(img,
                                            seg,
                                            SIZE_SUB_FIGURE,
                                            mid_labels_alpha=segm_alpha,
                                            mid_image_gray=MIDDLE_IMAGE_GRAY)
    fig.savefig(path_out)
    plt.close(fig)