def main(paths, nb_jobs=NB_THREADS, segm_alpha=MIDDLE_ALPHA_OVERLAP):
    logging.info('running...')
    assert paths['segms'] != paths['output'], 'overwriting segmentation dir'
    assert os.path.basename(paths['images']) != paths['output'], \
        'overwriting image dir'

    logging.info(tl_expt.string_dict(paths, desc='PATHS'))
    if not os.path.exists(paths['output']):
        assert os.path.isdir(os.path.dirname(paths['output'])), \
            'missing folder: %s' % os.path.dirname(paths['output'])
        os.mkdir(paths['output'])

    paths_imgs = glob.glob(paths['images'])
    logging.info('found %i images in dir "%s"', len(paths_imgs), paths['images'])

    _warped_overlap = partial(perform_visu_overlap, paths=paths,
                              segm_alpha=segm_alpha)

    created = []
    iterate = tl_expt.WrapExecuteSequence(_warped_overlap, paths_imgs,
                                          nb_jobs=nb_jobs, desc='overlapping')
    for r in iterate:
        created.append(r)

    logging.info('matched and created %i overlaps', np.sum(created))
    logging.info('DONE')
Exemplo n.º 2
0
def relabel_folder_images(path_images,
                          path_out,
                          labels_old,
                          labels_new,
                          nb_jobs=1):
    """ perform single or multi thread image quantisation

    :param [int] labels_old:
    :param [int] labels_new:
    :param [str] path_images: list of input images
    :param path_out: output directory
    :param [int] labels_old: list of labels to be replaced
    :param [int] labels_new: list of new labels
    :param int nb_jobs:
    """
    assert os.path.isdir(os.path.dirname(path_images)), \
        'missing folder: %s' % path_images
    assert os.path.isdir(path_out), 'missing ouput folder: %s' % path_out

    path_imgs = sorted(glob.glob(path_images))
    logging.info('found %i images', len(path_imgs))

    _wrapper_img_relabel = partial(perform_image_relabel,
                                   path_out=path_out,
                                   labels_old=labels_old,
                                   labels_new=labels_new)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_img_relabel,
                                          path_imgs,
                                          nb_jobs=nb_jobs,
                                          desc='relabel images')
    list(iterate)
Exemplo n.º 3
0
def perform_stage(df_group, stage, path_images, path_out):
    """ perform cutting images for a particular development stage
    and nom them into common image size

    :param df_group: input dataframe with ellipse parameters
    :param int stage: index of development stage
    :param str path_images: path to the image folder
    :param str path_out: path to the output folder
    """
    logging.info('stage %i listing %i items' % (stage, len(df_group)))
    stat_a = NORM_FUNC(df_group['ellipse_a'])
    stat_b = NORM_FUNC(df_group['ellipse_b'])
    norm_size = (int(stat_b), int(stat_a))
    logging.info('normal dimension is %s' % repr(norm_size))

    path_out_stage = os.path.join(path_out, str(stage))
    if not os.path.isdir(path_out_stage):
        os.mkdir(path_out_stage)

    wrapper_object = partial(extract_ellipse_object,
                             path_images=path_images,
                             path_out=path_out_stage,
                             norm_size=norm_size)
    desc = 'stage %i - size %s' % (stage, norm_size)
    iterate = tl_expt.WrapExecuteSequence(wrapper_object,
                                          df_group.iterrows(),
                                          nb_jobs=params['nb_jobs'],
                                          desc=desc)
    list(iterate)
def main(params):
    """ PIPELINE for matching

    :param {str: str} params:
    """
    logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))

    df_info = pd.read_csv(params['path_infofile'], sep='\t', index_col=0)
    df_info = filter_table(df_info, params['path_ellipses'])
    logging.info('filtered %i item in table' % len(df_info))
    path_csv = os.path.join(params['path_output'], NAME_CSV_RESULTS)

    list_evals = []
    # get the folder
    path_dir_csv = os.path.dirname(params['path_ellipses'])
    _wrapper_match = partial(select_optimal_ellipse, path_dir_csv=path_dir_csv)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_match,
                                          df_info.iterrows(),
                                          nb_jobs=params['nb_jobs'])
    for i, dict_row in enumerate(iterate):
        list_evals.append(dict_row)
        # every hundreds iteration do export
        if i % 100 == 0:
            pd.DataFrame(list_evals).to_csv(path_csv)

    df_ellipses = pd.DataFrame(list_evals)
    df_ellipses.to_csv(path_csv)
def main(params):
    """ PIPELINE for rotation

    :param {str: str} params:
    """
    logging.info('running...')

    logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))

    list_imgs = sorted(
        [p for p in glob.glob(params['path_images']) if os.path.isfile(p)])
    logging.info('found images: %i' % len(list_imgs))

    if not os.path.isdir(params['path_output']):
        os.mkdir(params['path_output'])

    wrapper_object = partial(perform_orientation_swap,
                             path_out=params['path_output'])
    dir_name = os.path.dirname(params['path_images'])
    iterate = tl_expt.WrapExecuteSequence(wrapper_object,
                                          list_imgs,
                                          nb_jobs=params['nb_jobs'],
                                          desc=dir_name)
    list(iterate)

    logging.info('DONE')
Exemplo n.º 6
0
def main(path_segs, path_out, nb_jobs):
    """ the main for creating annotations

    :param str path_segs: path with image pattern of images - obj segmentation
    :param str path_out:
    :param int nb_jobs: number of processes in parallel
    :return ndarray:
    """
    logging.info('running...')

    assert os.path.dirname(path_segs) != path_out, \
        'the output dir has to be different then the input object segmentation'
    list_imgs = glob.glob(path_segs)
    logging.info('found %i images', len(list_imgs))

    if not os.path.exists(path_out):
        assert os.path.isdir(os.path.dirname(path_out)), \
            'missing: %s' % path_out
        os.mkdir(path_out)

    wrapper_create_annot_centers = partial(create_annot_centers,
                                           path_out_seg=path_out,
                                           path_out_csv=path_out)
    iterate = tl_expt.WrapExecuteSequence(wrapper_create_annot_centers,
                                          list_imgs, nb_jobs=nb_jobs,
                                          desc='annotating images')
    list(iterate)

    logging.info('DONE')
Exemplo n.º 7
0
def main(params):
    """ PIPELINE candidate clustering

    :param {str: any} params:
    """
    with open(os.path.join(params['path_expt'],
                           'config_clustering.json'), 'w') as fp:
        json.dump(params, fp)

    tl_expt.create_subfolders(params['path_expt'], LIST_SUBDIRS)

    list_paths = [params[k] for k in ['path_images', 'path_segms', 'path_centers']]
    df_paths = tl_data.find_files_match_names_across_dirs(list_paths)
    df_paths.columns = ['path_image', 'path_segm', 'path_points']
    df_paths.index = range(1, len(df_paths) + 1)
    path_cover = os.path.join(params['path_expt'], run_train.NAME_CSV_TRIPLES)
    df_paths.to_csv(path_cover)

    logging.info('run clustering...')
    df_paths_new = pd.DataFrame()
    _wrapper_clustering = partial(cluster_points_draw_export, params=params,
                                  path_out=params['path_expt'])
    rows = (dict(row) for idx, row in df_paths.iterrows())
    iterate = tl_expt.WrapExecuteSequence(_wrapper_clustering, rows,
                                          nb_jobs=params['nb_jobs'])
    for dict_center in iterate:
        df_paths_new = df_paths_new.append(dict_center, ignore_index=True)

    df_paths_new.set_index('image', inplace=True)
    df_paths_new.to_csv(path_cover)
Exemplo n.º 8
0
def main(dict_paths, padding=0, use_mask=False, bg_color=None,
         nb_jobs=NB_THREADS):
    """ the main executable

    :param dict_paths:
    :param int padding:
    :param int nb_jobs:
    """
    logging.info('running...')
    if not os.path.isdir(dict_paths['output']):
        assert os.path.isdir(os.path.dirname(dict_paths['output'])), \
            '"%s" should be folder' % dict_paths['output']
        logging.debug('creating dir: %s', dict_paths['output'])
        os.mkdir(dict_paths['output'])

    list_dirs = [dict_paths['annot'], dict_paths['image']]
    df_paths = tl_data.find_files_match_names_across_dirs(list_dirs)

    logging.info('start cutting images')
    wrapper_cutting = partial(export_cut_objects, path_out=dict_paths['output'],
                              padding=padding, use_mask=use_mask, bg_color=bg_color)
    iterate = tl_expt.WrapExecuteSequence(wrapper_cutting,
                                          (row for idx, row in df_paths.iterrows()),
                                          nb_jobs=nb_jobs)
    list(iterate)

    logging.info('DONE')
Exemplo n.º 9
0
def main(paths, nb_jobs=NB_THREADS):
    logging.info('running...')

    logging.info(tl_expt.string_dict(paths, desc='PATHS'))
    if not os.path.exists(paths['output']):
        assert os.path.isdir(os.path.dirname(paths['output'])), \
            'missing folder: %s' % os.path.dirname(paths['output'])
        os.mkdir(paths['output'])

    paths_imgs = glob.glob(paths['images'])
    logging.info('found %i images in dir "%s"', len(paths_imgs),
                 paths['images'])

    warped_overlap = partial(perform_visu_overlap, paths=paths)

    created = []
    iterate = tl_expt.WrapExecuteSequence(warped_overlap,
                                          paths_imgs,
                                          nb_jobs=nb_jobs,
                                          desc='overlapping')
    for r in iterate:
        created.append(r)

    logging.info('matched and created %i overlaps', np.sum(created))
    logging.info('DONE')
def experiment_loo(params, df_stat, dict_annot, paths_img, path_classif,
                   path_dump):
    imgs_idx_path = list(zip(range(1, len(paths_img) + 1), paths_img))
    logging.info('run prediction on training images as Leave-One-Out...')
    dict_segms, dict_segms_gc = dict(), dict()
    path_out = os.path.join(params['path_exp'], FOLDER_LOO)
    path_visu = os.path.join(params['path_exp'], FOLDER_LOO_VISU)
    wrapper_segment = partial(retrain_loo_segment_image,
                              path_classif=path_classif, path_dump=path_dump,
                              path_out=path_out, path_visu=path_visu)
    iterate = tl_expt.WrapExecuteSequence(wrapper_segment, imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='experiment LOO')
    for name, segm, segm_gc in iterate:
        dict_segms[name] = segm
        dict_segms_gc[name] = segm_gc
    gc.collect()
    time.sleep(1)

    df = eval_segment_with_annot(params, dict_annot, dict_segms, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LOO,
                                 params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm (LOO)'),
                             ignore_index=True)
    df = eval_segment_with_annot(params, dict_annot, dict_segms_gc, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LOO_GC,
                                 params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm GC (LOO)'),
                             ignore_index=True)
    path_csv_stat = os.path.join(params['path_exp'], NAME_CSV_SEGM_STAT_RESULTS)
    df_stat.set_index(['name']).to_csv(path_csv_stat)
    return df_stat
def dataset_load_images_annot_compute_features(params,
                                               show_debug_imgs=SHOW_DEBUG_IMAGES):
    """ for all datasets perform the following steps:
    1) load image and annotation
    2) compute superpixel features and labels

    :param {str: ...} params: segmentation parameters
    :param bool show_debug_imgs: whether show debug images
    :return ({str: ndarray} * 6, [str]):
    """
    dict_images, dict_annots = dict(), dict()
    dict_slics, dict_features, dict_labels, dict_label_hist = \
        dict(), dict(), dict(), dict()
    feature_names = list()

    # compute features
    df_paths = pd.read_csv(params['path_train_list'], index_col=0)
    assert all(n in df_paths.columns for n in ['path_image', 'path_annot']), \
        'missing required columns in loaded csv file'
    wrapper_load_compute = partial(load_image_annot_compute_features_labels,
                                   params=params, show_debug_imgs=show_debug_imgs)
    iterate = tl_expt.WrapExecuteSequence(wrapper_load_compute, df_paths.iterrows(),
                                          nb_jobs=params['nb_jobs'],
                                          desc='extract training data')
    for name, img, annot, slic, features, labels, label_hist, feature_names in iterate:
        dict_images[name] = img
        dict_annots[name] = annot
        dict_slics[name] = slic
        dict_features[name] = features
        dict_labels[name] = labels
        dict_label_hist[name] = label_hist

    # gc.collect(), time.sleep(1)
    return dict_images, dict_annots, dict_slics, dict_features, dict_labels, \
           dict_label_hist, feature_names
Exemplo n.º 12
0
def convert_folder_images(path_images, path_out, path_json=None, nb_jobs=1):
    """ perform single or multi thread image quantisation

    :param [str] path_images: list of input images
    :param path_out: output directory
    :param path_json: path to json file
    :param int nb_jobs: int
    """
    assert os.path.isdir(os.path.dirname(path_images)), \
        'input folder does not exist'
    path_imgs = sorted(glob.glob(path_images))
    logging.info('found %i images', len(path_imgs))
    if not os.path.exists(path_out):
        assert os.path.isdir(os.path.dirname(path_out)), \
            'missing folder: %s' % os.path.dirname(path_out)
        os.mkdir(path_out)

    dict_colors = load_dict_colours(path_json)
    logging.debug('loaded dictionary %s', repr(dict_colors))
    wrapper_img_convert = partial(perform_img_convert,
                                  path_out=path_out,
                                  dict_colors=dict_colors)
    iterate = tl_expt.WrapExecuteSequence(wrapper_img_convert,
                                          path_imgs,
                                          nb_jobs=nb_jobs,
                                          desc='convert images')
    list(iterate)
def experiment_lpo(params,
                   df_stat,
                   dict_annot,
                   idx_paths_img,
                   path_classif,
                   path_dump,
                   nb_holdout,
                   show_debug_imgs=SHOW_DEBUG_IMAGES):
    """ experiment Leave-P-samples-Out

    :param {str: ...} params:
    :param DF df_stat:
    :param {str: ndarray} dict_annot:
    :param [str] paths_img:
    :param str path_classif:
    :param str path_dump:
    :param int nb_holdout:
    :param bool show_debug_imgs: whether show debug images
    :return {}:
    """
    logging.info('run prediction on training images as Leave-%i-Out...',
                 nb_holdout)
    dict_segms, dict_segms_gc = dict(), dict()
    cv = seg_clf.CrossValidatePOut(len(idx_paths_img), nb_hold_out=nb_holdout)
    test_imgs_idx_path = [[idx_paths_img[i] for i in ids] for _, ids in cv]
    path_out = os.path.join(params['path_exp'], FOLDER_LPO)
    path_visu = os.path.join(params['path_exp'], FOLDER_LPO_VISU) \
        if params.get('visual', False) else None
    _wrapper_segment = partial(retrain_lpo_segment_image,
                               path_classif=path_classif,
                               path_dump=path_dump,
                               path_out=path_out,
                               path_visu=path_visu,
                               show_debug_imgs=show_debug_imgs)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_segment,
                                          test_imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='experiment LPO')
    for dict_seg, dict_seg_gc in iterate:
        dict_segms.update(dict_seg)
        dict_segms_gc.update(dict_seg_gc)
    gc.collect()
    time.sleep(1)

    df = eval_segment_with_annot(params, dict_annot, dict_segms, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LPO % nb_holdout,
                                 params.get('drop_labels',
                                            None), params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm (L-%i-O)' % nb_holdout),
                             ignore_index=True)
    df = eval_segment_with_annot(params, dict_annot, dict_segms_gc, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LPO_GC % nb_holdout,
                                 params.get('drop_labels',
                                            None), params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm GC (L-%i-O)' % nb_holdout),
                             ignore_index=True)
    path_csv_stat = os.path.join(params['path_exp'],
                                 NAME_CSV_SEGM_STAT_RESULTS)
    df_stat.set_index(['name']).to_csv(path_csv_stat)
    return df_stat
def experiment_lpo(params, df_stat, dict_annot, paths_img, path_classif,
                   path_dump, nb_holdout):
    imgs_idx_path = list(zip(range(1, len(paths_img) + 1), paths_img))
    logging.info('run prediction on training images as Leave-%i-Out...',
                 nb_holdout)
    dict_segms, dict_segms_gc = dict(), dict()
    cv = seg_clf.CrossValidatePOut(len(paths_img), nb_hold_out=nb_holdout)
    test_imgs_idx_path = [[imgs_idx_path[i] for i in ids] for _, ids in cv]
    path_out = os.path.join(params['path_exp'], FOLDER_LPO)
    path_visu = os.path.join(params['path_exp'], FOLDER_LPO_VISU)
    wrapper_segment = partial(retrain_lpo_segment_image,
                              path_classif=path_classif, path_dump=path_dump,
                              path_out=path_out, path_visu=path_visu)
    iterate = tl_expt.WrapExecuteSequence(wrapper_segment, test_imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='experiment LPO')
    for dict_seg, dict_seg_gc in iterate:
        dict_segms.update(dict_seg)
        dict_segms_gc.update(dict_seg_gc)
    gc.collect()
    time.sleep(1)

    df = eval_segment_with_annot(params, dict_annot, dict_segms, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LPO % nb_holdout,
                                 params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm (L-%i-O)' % nb_holdout),
                             ignore_index=True)
    df = eval_segment_with_annot(params, dict_annot, dict_segms_gc, None,
                                 NAME_CSV_SEGM_STAT_RESULT_LPO_GC % nb_holdout,
                                 params['nb_jobs'])
    df_stat = df_stat.append(get_summary(df, 'segm GC (L-%i-O)' % nb_holdout),
                             ignore_index=True)
    path_csv_stat = os.path.join(params['path_exp'], NAME_CSV_SEGM_STAT_RESULTS)
    df_stat.set_index(['name']).to_csv(path_csv_stat)
    return df_stat
Exemplo n.º 15
0
def main(params):
    """ compute the distance among segmented superpixels and given annotation

    :param {str: ...} params:
    """
    logging.info('running...')

    if os.path.isdir(params['path_out']):
        logging.info('Missing output dir -> no visual export & results table.')

    list_paths = [params['path_images'], params['path_segms']]
    df_paths = tl_data.find_files_match_names_across_dirs(list_paths)
    df_paths.columns = ['path_image', 'path_segm']

    df_dist = pd.DataFrame()

    wrapper_eval = partial(compute_boundary_distance, params=params,
                           path_out=params['path_out'])
    iterate = tl_expt.WrapExecuteSequence(wrapper_eval, df_paths.iterrows(),
                                          nb_jobs=params['nb_jobs'],
                                          desc='evaluate SLIC')
    for name, dist in iterate:
        df_dist = df_dist.append({'name': name, 'mean boundary distance': dist},
                                 ignore_index=True)
    df_dist.set_index('name', inplace=True)

    if os.path.isdir(params['path_out']):
        df_dist.to_csv(os.path.join(params['path_out'], NAME_CSV_DISTANCES))
    logging.info('STATISTIC:')
    logging.info(df_dist.describe())

    logging.info('DONE')
Exemplo n.º 16
0
def export_dataset_visual(path_output,
                          dict_imgs,
                          dict_segms,
                          dict_slics,
                          dict_points,
                          dict_labels,
                          nb_jobs=NB_THREADS):
    """ visualise complete training dataset by marking labeld points
    over image and input segmentation

    :param {str: ndarray} dict_imgs:
    :param {str: ndarray} dict_segms:
    :param {str: ndarray} dict_slics:
    :param {str: ndarray} dict_points:
    :param {str: ndarray} dict_labels:
    :param int nb_jobs: number processing in parallel
    """
    logging.info('export training visualisations')

    path_out = os.path.join(path_output, FOLDER_POINTS_TRAIN)
    gener_args = ((path_out, name, dict_imgs[name], dict_segms[name],
                   dict_points[name], dict_labels[name], dict_slics[name],
                   None, '_train') for name in dict_imgs)
    iterate = tl_expt.WrapExecuteSequence(wrapper_draw_export_slic_centers,
                                          gener_args,
                                          nb_jobs=nb_jobs,
                                          desc='exporting visualisations')
    list(iterate)
def main(params, debug_export=DEBUG_EXPORT):
    """ the main entry point

    :param {str: ...} params: segmentation parameters
    :param bool debug_export: whether export visualisations
    """
    logging.getLogger().setLevel(logging.DEBUG)

    params = tl_expt.create_experiment_folder(
        params, dir_name=NAME_EXPERIMENT, stamp_unique=EACH_UNIQUE_EXPERIMENT)
    tl_expt.set_experiment_logger(params['path_exp'])
    logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))
    # tl_expt.create_subfolders(params['path_exp'], [FOLDER_IMAGE])

    df_paths = pd.read_csv(params['path_list'], index_col=0)
    logging.info('loaded %i items with columns: %s', len(df_paths),
                 repr(df_paths.columns.tolist()))
    df_paths.dropna(how='any', inplace=True)

    # create sub-folders if required
    tl_expt.create_subfolders(params['path_exp'], ['input', 'simple'])
    dict_segment = create_dict_segmentation(params, None, None, None, None)
    tl_expt.create_subfolders(params['path_exp'], [n for n in dict_segment] +
                              [n + DIR_CENTRE_POSIX for n in dict_segment] +
                              [n + DIR_VISUAL_POSIX for n in dict_segment])
    if debug_export:
        list_dirs = [n + DIR_DEBUG_POSIX for n in dict_segment if 'rg2sp' in n]
        tl_expt.create_subfolders(params['path_exp'], list_dirs)

    _wrapper_segment = partial(image_segmentation, params=params)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_segment,
                                          df_paths.iterrows(),
                                          nb_jobs=params['nb_jobs'])
    list(iterate)
def quantize_folder_images(path_images,
                           list_colors=None,
                           method='color',
                           px_threshold=THRESHOLD_INVALID_PIXELS,
                           nb_jobs=1):
    """ perform single or multi thread image quantisation

    :param str method:
    :param float px_threshold:
    :param str path_images:, input directory and image pattern for loading
    :param list_colors: [(int, int, int)], list of possible colours
    :param str method: interpolation method
    :param float px_threshold:
    :param nb_jobs: int
    """
    path_imgs = sorted(glob.glob(path_images))
    logging.info('found %i images', len(path_imgs))
    if list_colors is None:
        dict_colors = see_images_color_info(path_images, px_thr=px_threshold)
        list_colors = [c for c in dict_colors]

    _wrapper_quantize_img = partial(perform_quantize_image,
                                    method=method,
                                    list_colors=list_colors)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_quantize_img,
                                          path_imgs,
                                          nb_jobs=nb_jobs,
                                          desc='quantize images')
    list(iterate)
def compute_mean_image(list_img_paths):
    iterate = tl_expt.WrapExecuteSequence(tl_data.load_image_2d, list_img_paths,
                                          desc='compute mean image')
    imgs = [im[:, :, IMAGE_CHANNEL] for im, _ in iterate]
    min_size = np.min([img.shape for img in imgs], axis=0)
    imgs = [img[:min_size[0], :min_size[1]] for img in imgs]
    img_mean = np.median(imgs, axis=0)
    return img_mean
Exemplo n.º 20
0
def estim_model_classes_group(list_images,
                              nb_classes=4,
                              clr_space='rgb',
                              sp_size=30,
                              sp_regul=0.2,
                              dict_features=FTS_SET_SIMPLE,
                              pca_coef=None,
                              proba_type='GMM',
                              nb_jobs=NB_THREADS):
    """ estimate a model from sequence of input images and return it as result

    :param [ndarray] list_images:
    :param int nb_classes: number of clasees
    :param str clr_space: chose the color space
    :param int sp_size: initial size of a superpixel(meaning edge lenght)
    :param float sp_regul: regularisation in range(0;1) where "0" gives elastic
                   and "1" nearly square slic
    :param {str: [str]} dict_features: list of features to be extracted
    :param float pca_coef: range (0, 1) or None
    :param str proba_type: model type
    :param int nb_jobs: number of jobs running in parallel
    :return:
    """
    list_slic, list_features = list(), list()
    wrapper_compute = partial(compute_color2d_superpixels_features,
                              sp_size=sp_size,
                              sp_regul=sp_regul,
                              dict_features=dict_features,
                              clr_space=clr_space,
                              fts_norm=False)
    iterate = tl_expt.WrapExecuteSequence(wrapper_compute,
                                          list_images,
                                          nb_jobs=nb_jobs)
    for slic, features in iterate:
        list_slic.append(slic)
        list_features.append(features)

    # for img in list_images:
    #     slic, features = compute_color2d_superpixels_features(img, sp_size,
    #                     sp_regul, dict_features, clr_space, fts_norm=False)
    #     list_slic.append(slic)
    #     list_features.append(features)

    features = np.concatenate(tuple(list_features), axis=0)
    features = np.nan_to_num(features)

    # scaling
    scaler = preprocessing.StandardScaler()
    scaler.fit(features)
    features = scaler.transform(features)

    pca = None
    if pca_coef is not None:
        pca = decomposition.PCA(pca_coef)
        features = pca.fit_transform(features)

    model = seg_gc.estim_class_model(features, nb_classes, proba_type)
    return scaler, pca, model
def main_predict(path_classif,
                 path_pattern_imgs,
                 path_out,
                 name='SEGMENT___',
                 params_local=None):
    """ given trained classifier segment new images

    :param str path_classif:
    :param str path_pattern_imgs:
    :param str path_out:
    :param str name:
    """
    logging.getLogger().setLevel(logging.INFO)
    logging.info('running PREDICTION...')
    assert path_pattern_imgs is not None

    dict_classif = seg_clf.load_classifier(path_classif)
    classif = dict_classif['clf_pipeline']
    params = dict_classif['params']
    if params_local is not None:
        params.update({
            k: params_local[k]
            for k in params_local
            if k.startswith('path_') or k.startswith('gc_')
        })

    path_out, path_visu = prepare_output_dir(path_pattern_imgs,
                                             path_out,
                                             name,
                                             visual=params.get(
                                                 'visual', False))
    tl_expt.set_experiment_logger(path_out)
    logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))

    paths_img = sorted(glob.glob(path_pattern_imgs))
    logging.info('found %i images on path "%s"', len(paths_img),
                 path_pattern_imgs)

    logging.debug('run prediction...')
    show_debug_imgs = params.get('visual', False)
    _wrapper_segment = partial(try_segment_image,
                               params=params,
                               classif=classif,
                               path_out=path_out,
                               path_visu=path_visu,
                               show_debug_imgs=show_debug_imgs)
    list_img_path = list(zip([None] * len(paths_img), paths_img))
    iterate = tl_expt.WrapExecuteSequence(_wrapper_segment,
                                          list_img_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='segmenting images')
    for _ in iterate:
        gc.collect()
        time.sleep(1)

    logging.info('prediction DONE')
def main(dict_paths, nb_jobs=NB_THREADS, relabel=True):
    """ main evaluation

    :param {str: str} dict_paths:
    :param int nb_jobs: number of thred running in parallel
    :param bool relabel: whether relabel segmentation as sequential
    """
    logging.info('running...')
    if not os.path.isdir(dict_paths['output']):
        assert os.path.isdir(os.path.dirname(dict_paths['output'])), \
            'missing folder: %s' % dict_paths['output']
        os.mkdir(dict_paths['output'])

    name = os.path.basename(os.path.dirname(dict_paths['segm']))
    list_dirs = [dict_paths['annot'], dict_paths['segm']]
    if dict_paths['image'] != '':
        list_dirs.append(dict_paths['image'])
    df_paths = tl_data.find_files_match_names_across_dirs(list_dirs)
    path_csv = os.path.join(dict_paths['output'], NAME_CVS_PER_IMAGE % name)
    df_paths.to_csv(path_csv)

    annots, _ = tl_data.load_images_list(df_paths['path_1'].values.tolist())
    segms, names = tl_data.load_images_list(df_paths['path_2'].values.tolist())
    logging.info('loaded %i annots and %i segms', len(annots), len(segms))

    if relabel:
        annots = [relabel_sequential(annot)[0] for annot in annots]
        segms = list(map(wrapper_relabel_segm, zip(annots, segms)))

    path_csv = os.path.join(dict_paths['output'], NAME_CVS_PER_IMAGE % name)
    logging.debug('export to "%s"', path_csv)
    df_stat = seg_clf.compute_stat_per_image(segms, annots, names, nb_jobs)
    df_stat.to_csv(path_csv)

    path_csv = os.path.join(dict_paths['output'], NAME_CVS_OVERALL % name)
    logging.debug('export to "%s"', path_csv)
    df_desc = df_stat.describe()
    logging.info(df_desc.T[['count', 'mean', 'std']])
    df_desc.to_csv(path_csv)

    path_visu = os.path.join(dict_paths['output'], '%s__visual' % name)
    if not os.path.isdir(path_visu):
        os.mkdir(path_visu)
    # for idx, row in df_paths.iterrows():
    #     export_visual(row, path_visu)
    wrapper_visual = partial(export_visual, path_out=path_visu)
    iterate = tl_expt.WrapExecuteSequence(
        wrapper_visual, (row for idx, row in df_paths.iterrows()),
        nb_jobs=nb_jobs)
    list(iterate)

    logging.info('DONE')
Exemplo n.º 23
0
def evaluate_detection_stage(df_paths, stage, path_info, path_out, nb_jobs=1):
    """ evaluate center detection for particular list of stages

    :param df_paths:
    :param [int] stage:
    :param str path_info:
    :param str path_out:
    :param int nb_jobs:
    :return DF:
    """
    logging.info('evaluate stages: %s', repr(stage))
    str_stage = '-'.join(map(str, stage))

    path_csv = os.path.join(path_out, NAME_CSV_ANNOT_STAGE % str_stage)
    if not os.path.exists(path_csv) or FORCE_RELOAD:
        df_slices_info = seg_annot.load_info_group_by_slices(path_info, stage)
        logging.debug('export slices_info to "%s"', path_csv)
        df_slices_info.to_csv(path_csv)
    else:
        logging.debug('loading slices_info from "%s"', path_csv)
        df_slices_info = pd.read_csv(path_csv, index_col=0)

    if len(df_slices_info) == 0:
        return df_paths

    # df_paths = pd.merge(df_paths, df_slices_info, how='inner',
    #                     left_index=True, right_index=True)

    df_eval = pd.DataFrame()
    path_annot = os.path.join(path_out, FOLDER_ANNOT % str_stage)
    path_visu = os.path.join(path_out, FOLDER_ANNOT_VISUAL % str_stage)
    list_dirs = [os.path.basename(p) for p in [path_annot, path_visu]]
    logging.debug('create sub-dirs: %s', repr(list_dirs))
    tl_expt.create_subfolders(path_out, list_dirs)

    # perfom on new images
    stage_prefix = '[stage-%s] ' % str_stage
    logging.info('start section %s - load_center_evaluate ...', stage_prefix)
    wrapper_detection = partial(load_center_evaluate,
                                df_annot=df_slices_info,
                                path_annot=path_annot,
                                path_visu=path_visu,
                                col_prefix=stage_prefix)
    iterate = tl_expt.WrapExecuteSequence(wrapper_detection,
                                          df_paths.iterrows(),
                                          nb_jobs=nb_jobs)
    for dict_eval in iterate:
        df_eval = df_eval.append(dict_eval, ignore_index=True)
        df_eval.to_csv(os.path.join(path_out, NAME_CSV_TRIPLES_TEMP))
        # gc.collect(), time.sleep(1)
    return df_eval
Exemplo n.º 24
0
def estim_model_classes_group(list_images,
                              nb_classes,
                              dict_features,
                              sp_size=30,
                              sp_regul=0.2,
                              b_scaler=True,
                              pca_coef=None,
                              model_type='GMM',
                              nb_jobs=NB_THREADS):
    """ estimate a model from sequence of input images and return it as result

    :param [ndarray] list_images:
    :param int nb_classes: number of classes
    :param int sp_size: initial size of a superpixel(meaning edge lenght)
    :param float sp_regul: regularisation in range(0;1) where "0" gives elastic
                   and "1" nearly square slic
    :param {str: [str]} dict_features: list of features to be extracted
    :param float pca_coef: range (0, 1) or None
    :param bool b_scaler: whether use a scaler
    :param str model_type: model type
    :param int nb_jobs: number of jobs running in parallel
    :return:
    """
    list_slic, list_features = list(), list()
    _wrapper_compute = partial(compute_color2d_superpixels_features,
                               sp_size=sp_size,
                               sp_regul=sp_regul,
                               dict_features=dict_features,
                               fts_norm=False)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_compute,
                                          list_images,
                                          desc='compute SLIC & features',
                                          nb_jobs=nb_jobs)
    for slic, features in iterate:
        list_slic.append(slic)
        list_features.append(features)

    # for img in list_images:
    #     slic, features = compute_color2d_superpixels_features(img, sp_size,
    #                     sp_regul, dict_features, fts_norm=False)
    #     list_slic.append(slic)
    #     list_features.append(features)

    features = np.concatenate(tuple(list_features), axis=0)
    features = np.nan_to_num(features)

    model = seg_gc.estim_class_model(features, nb_classes, model_type,
                                     pca_coef, b_scaler)

    return model, list_features
def experiment_single_gmm(params, paths_img, path_out, path_visu):
    imgs_idx_path = list(zip([None] * len(paths_img), paths_img))
    logging.info('Perform image segmentation as single image in each time')
    dict_segms_gmm = {}
    wrapper_segment = partial(segment_image_independent,
                              params=params,
                              path_out=path_out,
                              path_visu=path_visu)
    iterate = tl_expt.WrapExecuteSequence(wrapper_segment,
                                          imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='experiment single GMM')
    for name, segm in iterate:
        dict_segms_gmm[name] = segm
    return dict_segms_gmm
def perform_predictions(params, paths_img, classif):
    logging.info('run prediction on training images...')
    imgs_idx_path = list(zip(range(1, len(paths_img) + 1), paths_img))

    dict_segms, dict_segms_gc = dict(), dict()
    path_out = os.path.join(params['path_exp'], FOLDER_SEGM)
    path_visu = os.path.join(params['path_exp'], FOLDER_SEGM_VISU)
    wrapper_segment = partial(segment_image, params=params, classif=classif,
                              path_out=path_out, path_visu=path_visu)
    iterate = tl_expt.WrapExecuteSequence(wrapper_segment, imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='image segm: prediction')
    for name, segm, segm_gc in iterate:
        dict_segms[name] = segm
        dict_segms_gc[name] = segm_gc
    return dict_segms, dict_segms_gc
Exemplo n.º 27
0
def main(params):
    """ PIPELINE for new detections

    :param {str: str} paths:
    """
    logging.info('running...')
    params = run_train.prepare_experiment_folder(params, FOLDER_EXPERIMENT)

    # run_train.check_pathes_patterns(paths)
    tl_expt.set_experiment_logger(params['path_expt'])
    logging.info('COMPUTER: \n%s', repr(os.uname()))
    logging.info(tl_expt.string_dict(params, desc='PARAMETERS'))

    tl_expt.create_subfolders(params['path_expt'], LIST_SUBFOLDER)

    path_csv = os.path.join(params['path_expt'], NAME_CSV_TRIPLES)
    df_paths = get_csv_triplets(params['path_list'],
                                path_csv,
                                params['path_images'],
                                params['path_segms'],
                                force_reload=FORCE_RERUN)

    dict_classif = seg_clf.load_classifier(params['path_classif'])
    params_clf = dict_classif['params']
    params_clf.update(params)
    logging.info(tl_expt.string_dict(params, desc='UPDATED PARAMETERS'))

    # perform on new images
    df_stat = pd.DataFrame()
    wrapper_detection = partial(load_compute_detect_centers,
                                params=params_clf,
                                path_classif=params['path_classif'],
                                path_output=params['path_expt'])
    iterate = tl_expt.WrapExecuteSequence(wrapper_detection,
                                          df_paths.iterrows(),
                                          nb_jobs=params['nb_jobs'])
    for dict_center in iterate:
        df_stat = df_stat.append(dict_center, ignore_index=True)
        df_stat.to_csv(os.path.join(params['path_expt'],
                                    NAME_CSV_TRIPLES_TEMP))

    df_stat.set_index(['image'], inplace=True)
    df_stat.to_csv(os.path.join(params['path_expt'], NAME_CSV_TRIPLES))
    logging.info('STATISTIC: \n %s', repr(df_stat.describe()))

    logging.info('DONE')
Exemplo n.º 28
0
def quantize_folder_images(path_images, label, nb_jobs=1):
    """ perform single or multi thread image quantisation

    :param [str] path_images: list of image paths
    :param int nb_jobs:
    """
    assert os.path.isdir(os.path.dirname(path_images)), \
        'input folder does not exist: %s' % os.path.dirname(path_images)
    path_imgs = sorted(glob.glob(path_images))
    logging.info('found %i images', len(path_imgs))

    _wrapper_img_inpaint = partial(perform_img_inpaint, labels=label)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_img_inpaint,
                                          path_imgs,
                                          nb_jobs=nb_jobs,
                                          desc='quantise images')
    list(iterate)
def experiment_group_gmm(params,
                         paths_img,
                         path_out,
                         path_visu,
                         show_debug_imgs=SHOW_DEBUG_IMAGES):
    logging.info('load all images')
    list_images = [
        load_image(path_img, params['img_type']) for path_img in paths_img
    ]
    imgs_idx_path = list(zip([None] * len(paths_img), paths_img))
    logging.info('Estimate image segmentation from whole sequence of images')
    params['path_model'] = os.path.join(params['path_exp'], NAME_DUMP_MODEL)
    if os.path.isfile(params['path_model']) and not FORCE_RECOMP_DATA:
        model, _, _ = load_model(params['path_model'])
    else:
        model, _ = seg_pipe.estim_model_classes_group(
            list_images,
            nb_classes=params['nb_classes'],
            dict_features=params['features'],
            sp_size=params['slic_size'],
            sp_regul=params['slic_regul'],
            pca_coef=params['pca_coef'],
            model_type=params['estim_model'])
        save_model(params['path_model'], model)

    logging.info('Perform image segmentation from group model')
    _wrapper_segment = partial(segment_image_model,
                               params=params,
                               model=model,
                               path_out=path_out,
                               path_visu=path_visu,
                               show_debug_imgs=show_debug_imgs)
    iterate = tl_expt.WrapExecuteSequence(_wrapper_segment,
                                          imgs_idx_path,
                                          nb_jobs=params['nb_jobs'],
                                          desc='experiment group GMM')
    # dict_segms_group = {}
    # for name, segm in iterate:
    #     dict_segms_group[name] = segm
    dict_segms_group = dict(iterate)
    gc.collect()
    time.sleep(1)
    return dict_segms_group
def main(params):
    df_paths = tl_data.find_files_match_names_across_dirs([params['path_images'],
                                                           params['path_segms'],
                                                           params['path_centers']])
    df_paths.columns = ['path_image', 'path_segm', 'path_centers']
    df_paths.index = range(1, len(df_paths) + 1)

    if not os.path.exists(params['path_output']):
        assert os.path.exists(os.path.dirname(params['path_output'])), \
            'missing folder: "%s"' % os.path.dirname(params['path_output'])
        os.mkdir(params['path_output'])

    df_slices_info = seg_annot.load_info_group_by_slices(params['path_infofile'],
                                                         params['stages'])
    _wrapper_export = partial(export_figure, df_slices_info=df_slices_info,
                              path_out=params['path_output'])
    iterate = tl_expt.WrapExecuteSequence(_wrapper_export, df_paths.iterrows(),
                                          nb_jobs=params['nb_jobs'])
    list(iterate)