Exemplo n.º 1
0
def plotGyroFits(gyroDataSet,
                 misalignmentsAndScales,
                 skew,
                 shift,
                 targetKnots=None):

    figureNumber = 0
    statisticsByLabelBeforeMotion, samplesByLabelInMotion = gyroDataSet
    correctedMeasures = utils.extract_and_correct_gyro_motion(
        misalignmentsAndScales, statisticsByLabelBeforeMotion,
        samplesByLabelInMotion)
    timestamps = sp.array(gyroDataSet[1]['timestamps']) * skew
    timestamps += sp.ones_like(timestamps) * shift

    if targetKnots is not None:
        plots.plot_targets(
            regression_gyro.computeTargetVelocities(targetKnots, timestamps),
            timestamps, figureNumber, (timestamps[0], timestamps[-1]), math.pi)

    plots.plot_motion(correctedMeasures, timestamps,
                      "Gyro measurements vs CNC targets", figureNumber,
                      (timestamps[0], timestamps[-1]), math.pi)

    figureNumber += 1

    plots.show_figures()
Exemplo n.º 2
0
def fit_filter_parameters():

    statisticsByLabelBeforeMotion, samplesByLabelInMotion = io.deserialize_results(
    )

    misalignmentsAndScales, skew, shift = io.deserialize_results(
        io._pkl_path, "gyro_params_latest.pkl")
    gyroMeasures = utils.extract_and_correct_gyro_motion(
        misalignmentsAndScales, statisticsByLabelBeforeMotion,
        samplesByLabelInMotion)

    misalignmentsAndScales, biases = io.deserialize_results(
        io._pkl_path, "accelero_params_latest.pkl")
    accMeasures = utils.extract_and_correct_accelero_motion(
        misalignmentsAndScales, biases, samplesByLabelInMotion)

    measures = sp.r_[accMeasures, gyroMeasures]

    utils.rescale_gyro_motion_timestamps(samplesByLabelInMotion, _timescale)
    imuTimestamps = samplesByLabelInMotion['timestamps']
    timestamps = sp.array(imuTimestamps) * skew
    timestamps += sp.ones_like(timestamps) * shift

    (xSplineTCK, ySplineTCK, zSplineTCK, aSplineTCK,
     bSplineTCK) = utils.extract_targets_from_hal_logs_xyzabvt()

    x = sp.r_[interpolate.splev(timestamps, xSplineTCK, der=0)]

    y = sp.r_[interpolate.splev(timestamps, ySplineTCK, der=0)]

    z = sp.r_[interpolate.splev(timestamps, zSplineTCK, der=0)]

    a = sp.r_[interpolate.splev(timestamps, aSplineTCK, der=0)]

    b = sp.r_[interpolate.splev(timestamps, bSplineTCK, der=0)]

    trg = sp.r_['0,2', x, y, z, a, b]

    plots.plot_encoders(trg, timestamps)
    plots.show_figures()

    filterParams = slave_model_filter.fit(sp.r_['0,2', x, y, z, a, b],
                                          measures, timestamps)
    #
    io.serialize_results(filterParams, io._pkl_path, "filter_params_%s.pkl")
Exemplo n.º 3
0
    def _testAcquisitionAndPlot(self):

        self.acquisition.flushBuffer()

        seconds = 50.0

        samplesByLabel = self.acquisition.acquireSamplesDuring(seconds)

        #        io.serialize_results(samplesByLabel)

        utils.addTimestamps(samplesByLabel, 64.0 / 16.0e6, True)

        self.assertAlmostEqual(utils.computeTimespan(samplesByLabel), seconds,
                               3)

        print utils.computeTimespan(samplesByLabel)
        plots.plot_samplesByLabel(samplesByLabel, 'timestamps')
        plots.show_figures()
Exemplo n.º 4
0
def gyro_dataset(misalignmentsAndScales=None, biases=None):
    acquisition = buildAcquisition()
    acquisition.flushBuffer()
    samplesByLabelBeforeMotion = acquisition.acquireSamplesDuring(5.0)

    acquisition.flushBuffer()
    samplesByLabelInMotion = acquisition.acquireSamplesDuring(5.0)

    dataSet = (samplesByLabelBeforeMotion, samplesByLabelInMotion)

    #    io.serialize_results(dataSet)

    plots.plot_samplesByLabel(
        samplesByLabelInMotion, 's',
        ['b', 'c', 's', 't', 'timestamps', 'T', 'x', 'y', 'z'])
    plots.show_figures()

    return dataSet
Exemplo n.º 5
0
def fit_accelero_parameters_regression():

    dataSet = io.float_columns_from_CSV(columnsMask=('longitude', 'latitude',
                                                     'avgX', 'avgY', 'avgZ'))
    measures = utils.build_measures_matrix(dataSet['avgX'], dataSet['avgY'],
                                           dataSet['avgZ'])
    longitudes, latitudes = dataSet["longitude"], dataSet["latitude"]
    targets = utils.build_targets_matrix(longitudes, latitudes)
    misalignmentsAndScales, biases = regression_accelero.fit(targets, measures)

    io.serialize_results((misalignmentsAndScales, biases), io._pkl_path,
                         "accelero_params_%s.pkl")

    correctedMesaures = utils.correct_measures(misalignmentsAndScales, biases,
                                               measures)
    residuals = regression_accelero.residuals(
        utils.concatenate(misalignmentsAndScales, biases), targets, measures)

    #    plots.plot_residuals(residuals, longitudes, latitudes)
    plots.plot_fit(correctedMesaures, longitudes, latitudes)
    plots.show_figures()