Exemplo n.º 1
0
def plot(x, y=None, *args, **kwargs):
    """
    Smart version of pylab.plot(...) that understands types used in IMUsim.

    The supported y value types are:

        - L{TimeSeries} data
        - Lists or tuples of Quaternions
        - Lists or tuples of column vectors
        - Arrays of column vectors
    """

    singleArg = (y is None)

    if singleArg:
        if isinstance(x, TimeSeries):
            plotTimeSeries(x, *args, **kwargs)
        else:
            y = x

    if isinstance(y, (list, tuple)):
        if isinstance(y[0], Quaternion):
            y = QuaternionArray(y).array
        elif isinstance(y[0], np.ndarray):
            y = np.hstack(y).T
    elif isinstance(y, QuaternionArray):
        y = y.array
    elif isinstance(y, np.ndarray):
        if y.ndim == 2:
            y = y.T
Exemplo n.º 2
0
def checkStaticConvergence(filterClass, performTest=True):
    """
    Test that an orientation estimation algorithm converges within a reasonable
    number of samples
    """
    gyro = np.zeros((3, 1))
    accel = -GRAVITY
    mag = NORTH
    SAMPLES = 500

    initialRotation = Quaternion.fromEuler((60, 45, 0))

    filter = filterClass(initialRotation=initialRotation,
                         initialTime=0,
                         initialRotationalVelocity=np.zeros((3, 1)),
                         **filterParameters.get(filterClass, {}))

    estimatedQuaternions = QuaternionArray(np.empty((SAMPLES, 4)))

    for i in range(SAMPLES):
        filter(accel, mag, gyro, dt * (1 + i))
        estimatedQuaternions[i] = filter.rotation.latestValue

    if performTest:
        assertMaximumErrorAngle(Quaternion(), filter.rotation.latestValue, 2)

    return estimatedQuaternions
Exemplo n.º 3
0
 def rotation(self, t):
     if np.shape(t) == ():
         return self.staticRotation
     else:
         rot = np.empty((len(t),4))
         rot[:] = self.staticRotation.components
         return QuaternionArray(rot)
Exemplo n.º 4
0
 def _makeValuesArray(self, values):
     if self.dtype is Quaternion:
         return QuaternionArray(values)
     elif issubclass(self._dtype, np.ndarray) and len(
             self._dshape) == 2 and self._dshape[1] == 1:
         return np.hstack(values)
     else:
         return np.array(values)
Exemplo n.º 5
0
 def rotation(self, t):
     if len(self.rotationKeyFrames) == 0:
         if np.ndim(t) == 0:
             return Quaternion.nan()
         else:
             return QuaternionArray.nan(len(t))
     else:
         return self.rotationKeyFrames(t)
Exemplo n.º 6
0
 def load_trajectory(group):
     pos_ts = load_timeseries(group['position'])
     rot_array_ts = load_timeseries(group['rotation'])
     rot_ts = TimeSeries(rot_array_ts.timestamps,
                         QuaternionArray(rot_array_ts.values.T))
     sampled = SampledTrajectory(positionKeyFrames=pos_ts,
                                 rotationKeyFrames=rot_ts)
     splined = SplinedTrajectory(sampled, smoothRotations=False)
     return splined
Exemplo n.º 7
0
def randomRotationSequence(t):
    """
    A random curving path of rotation values at given times.
    """
    theta = randomAngles()
    omega = rng.uniform(-2, 2, (3,1))
    phi = randomAngles()
    omicron = rng.uniform(-10, 10, (3,1))
    a = rng.uniform(-1, 1, (3,1))
    angles = theta + omega*t + a*np.sin(omicron*t + phi)
    return QuaternionArray([
        QuaternionFromEuler(angles[:,i].T, inDegrees=False)
            for i in range(len(t))])
def geodesicQuaternionPath():
    """
    Generate an array of quaternions following a geodesic path

    Returns
    -------
    t : :class:`~numpy.ndarray`
        timestamps of quaternions
    quaternionPath : :class:`~imusim.maths.quaternions.QuaternionArray`
        array of quaternions following a geodesic path
    """

    t = np.arange(0,10,0.1)
    q = Quaternion.fromEuler((45,0,0))

    return t, QuaternionArray([q**T for T in t])
Exemplo n.º 9
0
def runOrientationFilter(filter, trajectory):
    t = np.arange(trajectory.startTime + dt, trajectory.endTime, dt)
    trueOrientations = trajectory.rotation(t)
    gyroSamples = trueOrientations.rotateFrame(
        trajectory.rotationalVelocity(t))
    accelSamples = trueOrientations.rotateFrame(-GRAVITY)
    magSamples = trueOrientations.rotateFrame(NORTH)
    estimatedOrientations = QuaternionArray(
        np.empty_like(trueOrientations.array))

    for i in range(gyroSamples.shape[1]):
        accel = accelSamples[:, i:i + 1]
        mag = magSamples[:, i:i + 1]
        gyro = gyroSamples[:, i:i + 1]
        estimatedOrientations[i] = filter.rotation.latestValue
        filter(accel, mag, gyro, t[i])

    return trueOrientations, estimatedOrientations
    def __init__(self, posMarker, refMarkers, refVectors=None, refTime=0):
        self.posMarker = posMarker
        self.refMarkers = refMarkers
        if refVectors is None:
            self.refVectors = [
                refMarker.position(refTime) - posMarker.position(refTime)
                for refMarker in self.refMarkers
            ]
        else:
            self.refVectors = refVectors
        assert (~np.any(np.isnan(self.refVectors)))

        self.positionKeyFrames = self.posMarker.positionKeyFrames
        t = self.positionKeyFrames.timestamps
        vectorObservation = DavenportQ(self.refVectors)
        measVectors = np.array([
            ref.position(t) - self.posMarker.position(t)
            for ref in self.refMarkers
        ])
        rotations = QuaternionArray([
            vectorObservation(*vectors).conjugate
            for vectors in np.split(measVectors, len(t), axis=2)
        ])
        self.rotationKeyFrames = TimeSeries(t, rotations)
Exemplo n.º 11
0
def loadQualisysTSVFile(filename):
    """
    Load 3DOF or 6DOF marker data from a Qualisys Track Manager TSV file.

    @param filename: Name of TSV file to load.

    @return: A L{MarkerCapture} instance.
    """

    # Open file to read header.
    datafile = open(filename, 'r')

    # Count of header lines in file.
    headerLines = 0

    capture = MarkerCapture()

    markerIndices = dict()

    while True:

        # Read and count each file header line.
        line = datafile.readline().strip('\r\n')
        headerLines = headerLines + 1

        # Key and values are tab-separated.
        items = line.split('\t')
        key = items[0]
        values = items[1:]

        # Handle relevant fields.
        if key == 'FREQUENCY':
            # Frame rate.
            capture.frameRate = int(values[0])
            capture.framePeriod = 1/capture.frameRate
        elif key == 'DATA_INCLUDED':
            # 3D or 6D data.
            type = values[0]
            if (type == '3D'):
                # 3D data fields are implicitly XYZ co-ordinates.
                fieldNames = ['X', 'Y', 'Z']
        elif key == 'BODY_NAMES' or key == 'MARKER_NAMES':
            # List of markers or 6DOF body names.
            for i in range(len(values)):
                name = values[i]
                if type == '6D':
                    markerClass = Marker6DOF
                else:
                    markerClass = Marker3DOF
                markerIndices[markerClass(capture, name)] = i

            if (type == '6D'):
                # Field names are on a line after the body names, each
                # beginning with a space.
                fieldNames = [x.strip(' ') for x in
                    datafile.readline().strip('\r\n').split('\t')]
                headerLines = headerLines + 1

            # The above keys are always on the last line in the header.
            datafile.close()
            break

    # Load values from file, skipping header.
    data = np.loadtxt(filename, skiprows = headerLines)
    capture.frameCount = len(data)
    capture.frameTimes = np.arange(0, capture.frameCount / capture.frameRate,
            capture.framePeriod)

    # Find index in data array for a given marker and marker field name.
    def index(marker, name):
        offset = markerIndices[marker] * len(fieldNames)
        return offset + fieldNames.index(name)

    # Return data for a given marker and marker field names.
    def fields(marker, names):
        indices = [index(marker, name) for name in names]
        return data[:,indices[0]:indices[-1]+1]

    # Iterate through markers to fill in their data.
    for marker in capture.markers:
        # Get position data.
        positions = fields(marker, ['X', 'Y', 'Z']) / 1000
        if type == '6D':
            # Get rotation matrices.
            matrix_coeffs = fields(marker, ['Rot[%d]' % i for i in range(9)])
            # Mark invalid data (residual = -1) with NaNs.
            invalid = fields(marker, ['Residual'])[:,0] == -1.0
            matrix_coeffs[invalid] = np.nan
            positions[invalid] = np.nan
            # Convert to quaternions and unflip.
            quats = QuaternionArray(np.empty((capture.frameCount,4)))
            for i in range(len(quats)):
                q = Quaternion()
                q.setFromMatrix(matrix_coeffs[i].reshape((3,3)).T)
                quats[i] = q
            rotations = quats.unflipped()
            # Add rotation data to marker.
            for time, rotation in zip(capture.frameTimes, rotations):
                marker.rotationKeyFrames.add(time, rotation)
        # Add position data to marker.
        for time, position in zip(capture.frameTimes, positions):
            marker.positionKeyFrames.add(time, position.reshape(3,1))

    return capture
Exemplo n.º 12
0
 def rotation(self, t):
     if np.ndim(t) == 0:
         return self.qW ** t
     else:
         return QuaternionArray([self.qW ** ti for ti in t])
def loadQualisysTSVFile(filename):
    """
    Load 3DOF or 6DOF marker data from a Qualisys Track Manager TSV file.

    @param filename: Name of TSV file to load.

    @return: A L{MarkerCapture} instance.
    """

    # Open file to read header.
    datafile = open(filename, 'r')

    # Count of header lines in file.
    headerLines = 0

    capture = MarkerCapture()

    markerIndices = dict()

    while True:

        # Read and count each file header line.
        line = datafile.readline().strip('\r\n')
        headerLines = headerLines + 1

        # Key and values are tab-separated.
        items = line.split('\t')
        key = items[0]
        values = items[1:]

        # Handle relevant fields.
        if key == 'FREQUENCY':
            # Frame rate.
            capture.frameRate = int(values[0])
            capture.framePeriod = 1 / capture.frameRate
        elif key == 'DATA_INCLUDED':
            # 3D or 6D data.
            type = values[0]
            if (type == '3D'):
                # 3D data fields are implicitly XYZ co-ordinates.
                fieldNames = ['X', 'Y', 'Z']
        elif key == 'BODY_NAMES' or key == 'MARKER_NAMES':
            # List of markers or 6DOF body names.
            for i in range(len(values)):
                name = values[i]
                if type == '6D':
                    markerClass = Marker6DOF
                else:
                    markerClass = Marker3DOF
                markerIndices[markerClass(capture, name)] = i

            if (type == '6D'):
                # Field names are on a line after the body names, each
                # beginning with a space.
                fieldNames = [
                    x.strip(' ')
                    for x in datafile.readline().strip('\r\n').split('\t')
                ]
                headerLines = headerLines + 1

            # The above keys are always on the last line in the header.
            datafile.close()
            break

    # Load values from file, skipping header.
    data = np.loadtxt(filename, skiprows=headerLines)
    capture.frameCount = len(data)
    capture.frameTimes = np.arange(0, capture.frameCount / capture.frameRate,
                                   capture.framePeriod)

    # Find index in data array for a given marker and marker field name.
    def index(marker, name):
        offset = markerIndices[marker] * len(fieldNames)
        return offset + fieldNames.index(name)

    # Return data for a given marker and marker field names.
    def fields(marker, names):
        indices = [index(marker, name) for name in names]
        return data[:, indices[0]:indices[-1] + 1]

    # Iterate through markers to fill in their data.
    for marker in capture.markers:
        # Get position data.
        positions = fields(marker, ['X', 'Y', 'Z']) / 1000
        if type == '6D':
            # Get rotation matrices.
            matrix_coeffs = fields(marker, ['Rot[%d]' % i for i in range(9)])
            # Mark invalid data (residual = -1) with NaNs.
            invalid = fields(marker, ['Residual'])[:, 0] == -1.0
            matrix_coeffs[invalid] = np.nan
            positions[invalid] = np.nan
            # Convert to quaternions and unflip.
            quats = QuaternionArray(np.empty((capture.frameCount, 4)))
            for i in range(len(quats)):
                q = Quaternion()
                q.setFromMatrix(matrix_coeffs[i].reshape((3, 3)).T)
                quats[i] = q
            rotations = quats.unflipped()
            # Add rotation data to marker.
            for time, rotation in zip(capture.frameTimes, rotations):
                marker.rotationKeyFrames.add(time, rotation)
        # Add position data to marker.
        for time, position in zip(capture.frameTimes, positions):
            marker.positionKeyFrames.add(time, position.reshape(3, 1))

    return capture
Exemplo n.º 14
0
 def load_timeseries(group):
     timestamps = group['timestamps'].value
     data = group['data'].value
     if data.shape[1] == 4:
         data = QuaternionArray(data)
     return TimeSeries(timestamps, data)
Exemplo n.º 15
0
def gyro_data_to_quaternion_array(gyro_data, gyro_times):
    dt = float(gyro_times[1] - gyro_times[0])
    nt.assert_almost_equal(np.diff(gyro_times), dt)
    q = integrate_gyro_quaternion_uniform(gyro_data, dt)
    return QuaternionArray(q)