Exemplo n.º 1
0
    def transform(self):
        # this function prepare the dataset to the yolo estructure
        aux_path = os.path.join(self.OUTPUT_PATH,
                                self.DATASET_NAME + "_" + self.model)
        shutil.copytree(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME),
                        aux_path)

        f = open(os.path.join(aux_path, "classes.names"), "r")
        for line in f:
            fn.CLASSES.append(line.split("\n")[0])
        train_images = list(
            paths.list_files(os.path.join(aux_path, "train"),
                             validExts=(".jpg")))
        test_images = list(
            paths.list_files(os.path.join(aux_path, "test"),
                             validExts=(".jpg")))
        traintxt = open(os.path.join(aux_path, "train.txt"), "w")
        testtxt = open(os.path.join(aux_path, "test.txt"), "w")
        for tr_im in train_images:
            traintxt.write(os.path.abspath(tr_im) + "\n")
        for te_im in test_images:
            testtxt.write(os.path.abspath(te_im) + "\n")
        traintxt.close()
        testtxt.close()
        fn.PascalVOC2YOLO(self.OUTPUT_PATH, self.DATASET_NAME + "_" +
                          self.model)  # , datasetPath + os.sep + "images"
        shutil.rmtree(os.path.join(aux_path, "train", "Annotations"))
        shutil.rmtree(os.path.join(aux_path, "test", "Annotations"))
 def readImagesAndAnnotations(self):
     self.imagePaths = list(
         paths.list_files(self.imagesPath, validExts=(".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif")))
     self.labelPaths = list(
         paths.list_files(self.labelsPath, validExts=(".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif")))
     if (len(self.imagePaths) != len(self.labelPaths)):
         raise Exception("The number of files is different in the folder of images and in the folder of labels")
Exemplo n.º 3
0
def get_HOG_Features(trainingPath, testingPath, cell_size=16, bin_size=8):
    from hog import Hog_descriptor

    # initialize the local binary patterns descriptor along with the data and label lists
    data = []
    labels = []
    test_data = []
    test_labels = []

    start_time = time.time()
    # loop over the training images
    for imagePath in paths.list_files(trainingPath, validExts=(".png",".ppm")):
        # open image
        img = cv2.imread(imagePath)
        gray = np.matrix(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
        resized_image = cv2.resize(gray, (48, 48))

        # get hog features
        hog = Hog_descriptor(resized_image, cell_size=cell_size, bin_size=bin_size)
        vector = hog.extract()
        v = np.array(vector)

        # extract the label from the image path, then update the
        # label and data lists
        labels.append(int(imagePath.split("/")[-2]))
        data.append(vector)

    # loop over the testing images
    for imagePath in paths.list_files(testingPath, validExts=(".png",".ppm")):
        
        # open image
        img = cv2.imread(imagePath)
        gray = np.matrix(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
        resized_image = cv2.resize(gray, (48, 48))

        # get hog features
        hog = Hog_descriptor(resized_image, cell_size=cell_size, bin_size=bin_size)
        vector = hog.extract()

        # extract the label from the image path, then update the
        # label and data lists
        test_labels.append(int(imagePath.split("/")[-2]))
        test_data.append(vector)

    feature_extraction_runtime = (time.time() - start_time)

    data = np.array(data)
    labels = np.array(labels)
    test_data = np.array(test_data)
    test_labels = np.array(test_labels)

    print "[INFO] HOG Features are ready!"
    print "Total image: ", len(data) + len(test_data)
    print "Feature extraction runtime: ", feature_extraction_runtime
    print "Average for one image:", feature_extraction_runtime / (len(data) + len(test_data))


    return (data, labels, test_data, test_labels)
def get_LBP_Features(trainingPath, testingPath, p, r):
	from localbinarypatterns import LocalBinaryPatterns
	from sklearn.utils import shuffle

	# initialize the local binary patterns descriptor along with the data and label lists
	desc = LocalBinaryPatterns(p, r)
	data = []
	labels = []
	test_data = []
	test_labels = []
	
	start_time = time.time()

	# loop over the training images
	for imagePath in paths.list_files(trainingPath, validExts=(".png",".ppm")):
		
		# load the image, convert it to grayscale, and describe it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# extract the label from the image path, then update the
		# label and data lists
		labels.append(imagePath.split("/")[-2])
		data.append(hist)

	# loop over the testing images
	for imagePath in paths.list_files(testingPath, validExts=(".png",".ppm")):

		# load the image, convert it to grayscale, describe it, and classify it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# extract the label from the image path, then update the
		# label and data lists
		test_labels.append(imagePath.split("/")[-2])
		test_data.append(hist)

	feature_extraction_runtime = (time.time() - start_time)

	data = np.array(data)
	labels = np.array(labels)
	test_data = np.array(test_data)
	test_labels = np.array(test_labels)

	data, labels = shuffle(data,labels)

	print "[INFO] LBP Features are ready!"
	print "Total image:", len(data) + len(test_data)
	print "Feature extraction runtime:", feature_extraction_runtime
	print "Average for one image:", feature_extraction_runtime / (len(data) + len(test_data))

	return (data, labels, test_data, test_labels)
Exemplo n.º 5
0
 def readImagesAndAnnotations(self):
     self.imagePaths = list(
         paths.list_files(self.inputPath, validExts=(".jpg", ".jpeg")))
     self.labelPaths = list(
         paths.list_files(self.inputPath, validExts=(".txt")))
     if (len(self.imagePaths) != len(self.labelPaths)):
         raise Exception(
             "The number of images is different to the number of annotations"
         )
Exemplo n.º 6
0
def PascalVOC2YOLO(dataset_path, dataset_name):
    listaFicheros_train = list(
        paths.list_files(os.path.join(dataset_path, dataset_name, "train"), validExts=(".xml")))
    listaFicheros_test = list(
        paths.list_files(os.path.join(dataset_path, dataset_name, "test"), validExts=(".xml")))
    result_path = os.path.join(dataset_path, dataset_name)
    if (not (os.path.exists(os.path.join(result_path,"train","labels"))) and not(os.path.exists(os.path.join(result_path,"test","labels")))):
        os.makedirs(os.path.join(result_path,"train","labels"))
        os.makedirs(os.path.join(result_path,"test","labels"))
    for anno in listaFicheros_train:
        write_anno(anno,os.path.join(result_path,"train","labels"))
    for anno_test in listaFicheros_test:
        write_anno(anno_test, os.path.join(result_path,"test","labels"))
Exemplo n.º 7
0
def getDataFrame(dataSet = None, pathLoadDataSet = None):

    frames = []
    if(dataSet == None):
        if(pathLoadDataSet == None):
            pathLoadDataSet = "dataset"

        dsPaths = list(paths.list_files(pathLoadDataSet, "csv"))
        dsPaths = np.array(sorted(dsPaths))
        frames = [pd.read_csv(dsPath) for dsPath in dsPaths]
    else:
        dsPaths = np.genfromtxt("dataset/dataset-default.csv", delimiter=',')
        frames = [pd.DataFrame(dataSet), pd.DataFrame(dsPaths)]


    for frame in frames:
        columns = ['tag']
        columns += ['col_' + str(col) for col in range(len(frame.columns) -1)]
        frame.columns = columns
        frame['tag'] = pd.Categorical(frame.tag)

    dfPadrao = pd.concat(frames, axis=0) 

    if(dfPadrao.isnull().values.any()):
        dfPadrao = dfPadrao.fillna(0)

    return dfPadrao
Exemplo n.º 8
0
def load_image(path):
    imagePaths = list(paths.list_files(path, validExts=(".jpg")))
    random.shuffle(imagePaths)

    if imagePaths == []: print("need more gifs at :" + path)
    imagePath = imagePaths[0]
    return imagePath
Exemplo n.º 9
0
    def generate_main_pickle_file(encodings_folder, main_pickle_file):
        """The low-level method to generate main encoding file from existing face encodings via merging separated encoding pickle files to one.

        Args:
            encodings_folder (str):     The folder that is keep all faces's encoded data files.
            main_pickle_file (str):     The file that is keep merged all faces's encoded data.
        """

        main_decoding = {"encodings": [], "names": []}

        encoding_files = list(paths.list_files(encodings_folder))

        for encoding_file in encoding_files:

            encoding = open(encoding_file, "rb")
            decoding = pickle.load(encoding)

            main_decoding["encodings"].extend(decoding["encodings"])
            main_decoding["names"].extend(decoding["names"])

            encoding.close()

        main_encoding = open(main_pickle_file, "wb")
        main_encoding.write(pickle.dumps(main_decoding))
        main_encoding.close()
Exemplo n.º 10
0
def nonMaximumSupression(detections_path):
    output_path = detections_path[:detections_path.rfind("/")]
    listdirmodels = [
        p for p in os.listdir(detections_path) if "detection" in p
    ]
    annotationsFiles = list(
        paths.list_files(os.path.join(listdirmodels[0]), validExts=(".xml")))
    for an in annotationsFiles:
        boxes = []
        classesBoxes = []
        fileName = an.split("/")[-1]
        # boxes += extractBoxes(an)
        for dir in listdirmodels:
            if os.path.isdir(dir):
                ImageBoxes, classesB = extractBoxes(os.path.join(
                    dir, fileName))
                if len(ImageBoxes) != 0:
                    boxes = boxes + ImageBoxes
                    classesBoxes = classesBoxes + classesB

        # boxes=[extractBoxes(os.path.join(dir,fileName)) for dir in listdirmodels if os.path.isdir(dir)]
        boxes = np.array(boxes)
        classesBoxes = np.array(classesBoxes)
        if (len(boxes) != 0):
            boxes, modes = non_max_suppression_fast(boxes, classesBoxes, 0.45)

        if not os.path.exists(os.path.join(output_path, "detectionEnsemble")):
            os.makedirs(os.path.join(output_path, "detectionEnsemble"))
        xml = generateXML(an, boxes, modes, "detectionEnsemble")
        file = open(os.path.join(".", "detectionEnsemble", fileName), 'w')
        file.write(xml)
def load_data(directory, image_ext):
    """
    Load the training data, given a directory and the images file extension. 
    Returns the data as a numpy a array, the labels and class_weights. class_weights
      are necesary to deal with class imabalance problems
    :param directory: directory where the data is saved 
    :param image_ext: extension for the images to train
    :param one_hot: default False, whether Y should be converted to one_hot
    :return: data, labels, class_weights
    """
    image_paths = list(paths.list_files(directory, validExts=(image_ext)))
    data = []
    labels = []
    for (i, image_path) in enumerate(image_paths):
        label = image_path.split(os.path.sep)[-1].split('-')[0]
        image = cv2.imread(image_path)
        image = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA)
        image = img_to_array(image)
        # image = np.expand_dims(image, axis=0)
        data.append(image)
        labels.append(label)
    data = np.array(data).astype('float') / 255.0
    labels = np.array(labels)
    class_weights = compute_class_weights(labels)
    one_hot_labels = convert_to_one_hot(labels)
    return data, labels, class_weights, one_hot_labels
Exemplo n.º 12
0
def generate_specs():
    wav_spectrogram = None
    print("[INFO] Generating Spectograms from chunks...")
    wavPaths = sorted(list(paths.list_files("wav")))
    random.seed(22)
    random.shuffle(wavPaths)
    #MEL SPECTOGRAMS
    for wav in wavPaths:
        rate, data = wavfile.read(wav)
        data = butter_bandpass_filter(data, lowcut, highcut, rate, order=1)
        # Only use a short clip for our demo
        if np.shape(data)[0] / float(rate) > 10:
            print("?")
            data = data[0:rate * 10]
        #NORMAL SPECTOGRAM
        wav_spectrogram = pretty_spectrogram(data.astype('float64'),
                                             fft_size=fft_size,
                                             step_size=step_size,
                                             log=True,
                                             thresh=spec_thresh)

        pltsave.imsave("spectograms/specs/spec_" + wav.split("\\")[1] + ".png",
                       wav_spectrogram)
        #fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(8,5))
        #cax = ax.matshow(np.transpose(wav_spectrogram), interpolation='nearest', aspect='auto', cmap=plt.cm.afmhot, origin='lower')
        #cax.write_png("specs/spec_"+wav.split("/")[1]+".png")

        mel_spec = make_mel(wav_spectrogram,
                            mel_filter,
                            shorten_factor=shorten_factor)
        pltsave.imsave(
            "spectograms/specs_mel/m_spec_" + wav.split("\\")[1] + ".png",
            mel_spec)
Exemplo n.º 13
0
    def pre_compute_features(self, db):
        precompute_features = []
        DATASET_FOLDER = 'dataset/' + db + '/'
        i = 0
        for name in os.listdir(DATASET_FOLDER):
            userDir = os.path.join(DATASET_FOLDER, name)
            for user in os.listdir(userDir):
                # Load a sample picture and learn how to recognize it.
                data_image = face_recognition.load_image_file(os.path.join(userDir, user))

                i = i + 1
                print(str(i) + "/" + str(len(list(paths.list_files(DATASET_FOLDER)))))
                print(user)
                face_locations = np.asarray(face_recognition.face_locations(data_image))
                if len(face_locations) > 0:
                    if self.align_on:
                        faces = np.asarray(face_alignment(data_image))
                        if len(faces) > 0:
                            data_image = faces[0]
                        else:
                            data_image, cropped = crop_face(data_image, np.asarray(face_locations[0]), margin=-10, size=self.face_size)
                        face_locations = np.asarray(face_recognition.face_locations(data_image))

                    if self.augm_on:
                        faces_augm = face_augmentation(data_image, 5)
                        for img in faces_augm:
                            face_encodings = self.predict_encodings(img, face_locations)
                            if face_encodings is not None and len(face_encodings) >= 1:
                                precompute_features.append({"name": user, "features": face_encodings[0]})

                    face_encodings = self.predict_encodings(data_image, face_locations)
                    if face_encodings is not None and len(face_encodings) >= 1:
                        precompute_features.append({"name": user, "features": face_encodings[0]})
        pickle_stuff(self.features_files, precompute_features)
Exemplo n.º 14
0
def show_local_animation(emotion):
    print(emotion)
    frame_montage = montage_copy.copy()
    print(EMOTIONS_PATH + "/" + emotion)
    imagePaths = list(
        paths.list_files(EMOTIONS_PATH + "/" + emotion, validExts=(".mp4")))
    print(imagePaths)
    random.shuffle(imagePaths)

    if imagePaths == []: print("need more gifs at :" + emoticon)
    imagePath = imagePaths[0]
    subject = translate_emotion(emotion)

    cv2.putText(frame_montage, subject, (10, frame_montage.shape[0] - 10),
                cv2.FONT_HERSHEY_SIMPLEX, 2.45, (255, 255, 255), 2)
    frames = grab_frames(imagePath)

    for framex in frames:
        frame_to_show = imutils.resize(framex, width=880, height=880)
        (h, w) = frame_to_show.shape[:2]
        h_montage = frame_montage.shape[0]
        if h > h_montage:
            print("crop image at :" + str(h_montage))
            frame_to_show = frame_to_show[0:h_montage, 0:w]
        x_montage = insert_animation(frame_montage, frame_to_show, alpha=1.0)
        cv2.imshow("Montage", x_montage)

        # time.sleep(0.01)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
Exemplo n.º 15
0
def move_data_to_datasets():
    imgPaths = list(paths.list_files("../do_An_3/dataset/"))
    for imgPath in imgPaths:
        filename = imgPath.split("/")[-1]
        img = cv2.imread(imgPath)
        img = cv2.resize(img, (64, 64), cv2.INTER_AREA)
        cv2.imwrite("../finall/datasets/" + filename, img)
Exemplo n.º 16
0
def mainDataset(imagesPath, outputDataset, conf, pathPesos, fichNames,
                fichCfg):
    # Give the configuration and weight files for the model and
    # load the network using them.
    if os.path.exists(outputDataset) == False:
        os.mkdir(outputDataset)
    dirPath = os.path.dirname(os.path.realpath(__file__))
    #fichNames = glob.glob(pathPesos+"/*.names")
    #classesFile = fichNames[0]
    classes = None
    with open(fichNames, 'rt') as f:
        classes = f.read().rstrip('\n').split('\n')
    #fichCfg = glob.glob(pathPesos + "/*.cfg")
    #modelConfiguration = fichCfg[0]
    #modelWeights = glob.glob(pathPesos+"/*.weights")

    # Invocamos a la funcion con dichos parametros y mostramos el resultado por pantalla
    images = list(
        paths.list_files(imagesPath,
                         validExts=(".jpg", ".jpeg", ".png", ".bmp", ".tiff",
                                    ".tif")))
    #for peso in modelWeights:
    net = cv.dnn.readNetFromDarknet(fichCfg, pathPesos)  #peso)
    net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
    net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
    #nomPeso = os.path.basename( pathPesos)#peso)
    #nombre = os.path.splitext(nomPeso)[0]
    for image in images:
        generateXMLFromImage(image, outputDataset, net, classes,
                             conf)  #+'/'+nombre, net)
Exemplo n.º 17
0
def load_data(path, label_encoder):
    data = {
        "train_o": [],
        "train_i": [],
        "val_o": [],
        "val_i": [],
        "test_o": [],
        "test_i": []
    }
    for data_type in ["train", "val", "test"]:
        csv_files_path = list(
            paths.list_files(os.path.join(path, data_type), ".csv"))
        for csv_path in tqdm(csv_files_path):
            df = pd.read_csv(csv_path)
            df = df["close"]

            input_data = df.values
            input_data = Scaler().fit_transform(input_data.reshape(
                -1, 1)).flatten()

            output_data = os.path.normpath(csv_path)
            output_data = output_data.split(os.path.sep)[-2]

            data[f"{data_type}_o"].append(label_encoder[output_data])
            data[f"{data_type}_i"].append(input_data)
    for key in data:
        data[key] = np.asarray(data[key])
    return data
Exemplo n.º 18
0
    def evaluate(self):
        aux_path = os.path.join("map", self.dataset_name)
        if (not (os.path.exists(aux_path))):
            os.makedirs(os.path.join(aux_path))
        if( not (os.path.exists(os.path.join(aux_path,"labels")))):
            os.makedirs(os.path.join(aux_path,"labels"))
        if (not (os.path.exists(os.path.join(aux_path, "detection")))):
            os.makedirs(os.path.join(aux_path,"detection"))

        shutil.copy(os.path.join(self.dataset_path, "classes.names"), os.path.join(aux_path, "classes.names"))

        image_paths = list(paths.list_files(os.path.join(self.dataset_path, "test"), validExts=(".jpg")))
        for image in image_paths:
            name = os.path.basename(image).split('.')[0]
            shutil.copy(image, os.path.join(aux_path,"labels",os.path.basename(image)))
            shutil.copy(image, os.path.join(aux_path,"detection",os.path.basename(image)))
            anno_splited = os.path.join(self.dataset_path, "test", "Annotations", name + ".xml")
            shutil.copy(anno_splited, os.path.join(aux_path,"labels",name + ".xml"))
        os.system("python3 map/pascal2yolo_labels.py -d " + os.path.join(os.path.join(aux_path,"labels/") + " -f " + os.path.join(aux_path,"classes.names")))
        if not(self.ensemble):
             self.predictor.predict(os.path.join(aux_path,"detection/"))
        # In this moment we have the images predicted. Now we are going to tranform the predicted annotations to Darknet format
        os.system("python3 map/pascal2yolo_detection.py -d " + os.path.join(
            os.path.join(aux_path,"detection/") + " -f " + os.path.join(aux_path, "classes.names")))
        os.system("find `pwd`/map/" + self.dataset_name+"/labels -name '*.txt' > " + aux_path + "/test.txt")
        os.system("./map/darknet detector compare " + os.path.join(aux_path,"test.txt") + " " + os.path.join(aux_path,"classes.names") + " > " + aux_path + "/" + str(self.model_name)+ "results.txt")
        # shutil.rmtree(os.path.join(aux_path,"detection"))
        shutil.move(os.path.join(aux_path,"detection"),os.path.join(aux_path,"detection"+str(self.model_name)))
        shutil.rmtree(os.path.join(aux_path,"labels"))

        # Esto es por si se quiere mover el archivo con lo resultados para que esten todos en la misma ubicacion
        shutil.copy( aux_path + "/" + str(self.model_name)+ "results.txt", os.path.join( aux_path, self.dataset_name))
        os.remove(os.path.join(aux_path,"classes.names"))
Exemplo n.º 19
0
    def test_train_val_splits(
        self,
        paths_to_images: str,
        test_train_split_ratio: float,
        test_val_split_ratio: str,
    ) -> list:
        # grab all image paths then construct the training, validating and testing splits
        self.image_paths = list(paths.list_files(paths_to_images))
        random.shuffle(self.image_paths)

        self.division_i = int(len(self.image_paths) * test_train_split_ratio)
        self.trainimage_paths = self.image_paths[:self.division_i]
        self.test_val_split_paths = self.image_paths[self.division_i:]

        self.division_j = int(
            len(self.test_val_split_paths) * test_val_split_ratio)
        self.testimage_paths = self.test_val_split_paths[:self.division_j]
        self.valimage_paths = self.test_val_split_paths[self.division_j:]

        # create the list of datasets to build
        self.dataset = [
            ("train", self.trainimage_paths, self.train_csv),
            ("test", self.testimage_paths, self.test_csv),
            ("val", self.valimage_paths, self.val_csv),
        ]
        return self.dataset
Exemplo n.º 20
0
def datasetSplit( Nproyecto, darknetPath, pathImages, porcentaje):
    listaFicheros = list(paths.list_files(pathImages,validExts=(".jpg")))
    train_list,test_list, _ ,_ = train_test_split(listaFicheros, listaFicheros, train_size=porcentaje)
    #creamos la estructura de carpetas, la primera contendra las imagenes del entrenamiento
    os.makedirs(os.path.join(darknetPath , Nproyecto , 'train', 'JPEGImages'))
    #esta carpeta contendra las anotaciones de las imagenes de entrenamiento
    os.makedirs(os.path.join(darknetPath , Nproyecto , 'train', 'labels'))
    #y esta ultima carpeta va a contener tanto las imagenes como los ficheros de anotaciones del test
    os.makedirs(os.path.join(darknetPath , Nproyecto , 'test', 'JPEGImages'))
    #para las imagenes de entrenamiento
    for file in train_list:
        #obtenemos el fichero .txt asociado
        ficherolabel = file[0:file.rfind('.')]+'.xml'
        #obetenemos el nombre de los ficheros
        name = os.path.basename(file).split('.')[0]
        #movemos las imagenes a la carpeta JpegImages
        shutil.copy(file, os.path.join(darknetPath , Nproyecto , 'train', 'JPEGImages',name+'.jpg'))
        #movemos las anotaciones a la carpeta
        shutil.copy(ficherolabel,os.path.join(darknetPath , Nproyecto , 'train', 'labels',name+'.xml'))
    #para las imagenes de entrenamiento
    for file in test_list:
        #obtenemos el fichero .txt asociado
        ficherolabel = file[0:file.rfind('.')]+'.xml'
        #obetenemos el nombre de los ficheros
        name = os.path.basename(file).split('.')[0]
        #movemos las imagenes a la carpeta JpegImages
        shutil.copy(file, os.path.join(darknetPath , Nproyecto , 'test', 'JPEGImages',name+'.jpg'))
        #movemos las anotaciones a la carpeta
        shutil.copy(ficherolabel, os.path.join(darknetPath , Nproyecto , 'test', 'JPEGImages',name+'.xml'))
Exemplo n.º 21
0
def get_hog_features(trainingSetPath, win_stride, padding, mean_shift, scale):
    # evaluate the command line arguments (using the eval function like
    # this is not good form, but let's tolerate it for the example)
    winStride = eval(win_stride)
    padding = eval(padding)
    meanShift = True if mean_shift > 0 else False
    
    # initialize the HOG descriptor/person detector
    hog = cv2.HOGDescriptor()
    #hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())  # CHECK FOR IT!

    # initialize the local binary patterns descriptor along with the data and label lists
    labels = []
    data = []
    test_labels = []
    test_data = []

    # loop over the training images
    for imagePath in paths.list_files(trainingSetPath, validExts=(".png",".ppm")):
        
        # open image
        img = cv2.imread(imagePath, cv2.IMREAD_GRAYSCALE)
        # resized_image = cv2.resize(img, (32, 32))  # RESIZING
        rects, weights = hog.detectMultiScale(img, winStride=winStride,
            padding=padding, scale=scale, useMeanshiftGrouping=meanShift)
        print (rects)
        # get hog features
        """STAYED HERE!"""

		# extract the label from the image path, then update the
		# label and data lists
        labels.append(imagePath.split("/")[-2])
        data.append(weights)
Exemplo n.º 22
0
def tta(model, myTechniques, pathImg, option):
    fichs = os.listdir(pathImg)
    # 1. Create tmp folder
    os.mkdir(pathImg + '/tmp')
    # move imgs to tmp
    for fich in fichs:
        shutil.copy(pathImg + '/' + fich, pathImg + '/tmp')
    imgFolder = pathImg
    os.mkdir(pathImg + '/../salida')
    # 3. Classification

    for technique in myTechniques:
        function.clasification(imgFolder, technique)
    # we get all the folders we have created

    listDirOut = []
    for filename in os.scandir(pathImg + '/../salida'):
        if os.path.isdir(pathImg + '/../salida/' + filename.name) == True:
            listDirOut.append(pathImg + '/../salida/' + filename.name)

    for dir in listDirOut:
        for img in os.scandir(dir + '/tmp'):
            img1 = img.name[(img.name).find("_") + 1:]
            img2 = img1[img1.find("_") + 1:]
            shutil.move(dir + '/tmp/' + img.name, dir + '/' + img2)
        os.rmdir(dir + '/tmp')

    # 4. Generate xml
    for dir in listDirOut:
        model.predict(dir, dir)

    # 5. Detection
    for dir in listDirOut:
        tec = dir.split("/")
        function.detection(dir, tec[len(tec) - 1])

    for dir in listDirOut:
        for img in os.listdir(dir):
            if os.path.isdir(dir + '/' + img) == False:
                os.remove(dir + '/' + img)
        for img in os.listdir(dir + '/tmp'):
            img1 = img[img.find("_") + 1:]
            img2 = img1[img1.find("_") + 1:]
            shutil.move(dir + '/tmp/' + img, dir + '/' + img2)
        os.rmdir(dir + '/tmp')

    # 6. Ensemble
    for dirOut in os.listdir(pathImg + '/../salida/'):
        for file in list(
                paths.list_files(pathImg + '/../salida/' + dirOut,
                                 validExts=(".jpg", ".jpeg", ".png", ".bmp",
                                            ".tiff", ".tif"))):
            os.remove(file)

    ensembleOptions.ensembleOptions(pathImg + '/../salida/', option)
    for xml in os.scandir(pathImg + '/../salida/output/'):
        shutil.copy(pathImg + '/../salida/output/' + xml.name, pathImg + '/')
    if notebook is False:
        shutil.rmtree(pathImg + '/../salida/')
    shutil.rmtree(pathImg + '/tmp')
Exemplo n.º 23
0
def models(listaModels, pathImg, option, combine=False):
    if combine == 'False':
        # 1. First we create the folder where we will store the resulting images and create as many folders as we have models
        if not os.path.exists(pathImg + '/../salida'):
            os.mkdir(pathImg + '/../salida')
        for model in listaModels:
            os.mkdir(pathImg + '/../salida/' +
                     os.path.splitext(os.path.basename(model.pathPesos))[0])

        # 2. We create a list with the folders we have created
        listDirOut = []
        for filename in os.listdir(pathImg + '/../salida'):
            if os.path.isdir(pathImg + '/../salida/' + filename) == True:
                listDirOut.append(pathImg + '/../salida/' + filename)

        # 3. we copy the images from the initial folder to each of the created folders
        for dire in listDirOut:
            for fich in os.listdir(pathImg):
                shutil.copy(pathImg + '/' + fich, dire + '/')

        # 4. Generate xml
        for model in listaModels:
            #If the model matches the name of the folder, we will predict it is only folder
            for dir in os.listdir(pathImg + '/../salida/'):
                if (os.path.splitext(
                        os.path.basename(pathImg + '/../salida/' +
                                         model.pathPesos))[0]) == dir:
                    #Then we list the files in that folder
                    images = os.listdir(pathImg + '/../salida/' + dir)
                    model.predict(pathImg + '/../salida/' + dir,
                                  pathImg + '/../salida/' + dir, 0.5)
        list_dir = os.listdir(pathImg + '/../salida')
        dest = "/mnt/output"
        #         shutil.move(pathImg+'/../salida/', '/mnt/output')
        for sub_dir in list_dir:
            os.makedirs(os.path.join("/mnt/output", sub_dir))
            for file in os.listdir(
                    os.path.join(pathImg + '/../salida', sub_dir)):
                dir_to_move = os.path.join(pathImg + '/../salida', sub_dir,
                                           file)
                shutil.move(dir_to_move, os.path.join(dest, sub_dir, file))

    else:
        # 5. We perform the ensemble method
        for dirOut in os.listdir(pathImg):
            for file in list(
                    paths.list_files(pathImg + dirOut,
                                     validExts=(".jpg", ".jpeg", ".png",
                                                ".bmp", ".tiff", ".tif"))):
                os.remove(file)

        ensembleOptions.ensembleOptions(pathImg, option)
        visualize_images(pathImg)
        generate_xml(pathImg)
        os.makedirs("/mnt/output/output/")
        for sub_dir in os.listdir(pathImg + "output/"):
            dir_to_ = os.path.join(pathImg + "output", sub_dir)
            shutil.move(dir_to_, os.path.join("/mnt/output", 'output',
                                              sub_dir))
Exemplo n.º 24
0
def get_all_tagged_tittle():
    with open(f'tagged.txt', 'w', encoding="utf-8") as f:
        for file in paths.list_files('.', validExts=('.json',)):
            try:
                j = json.load(open(file, 'r', encoding='utf-8'))
                f.write(j['name'] + '\n')
            except Exception:
                print(file)
Exemplo n.º 25
0
def normalization(path_to_data):
    """Load all wavs file and split 2s/file
    ex: path_to_data = './data/'

    Args:
        path_to_data (string): path to data folder

    Returns:
        No return
    """

    try:
        #list all folder
        paths = list_files(path_to_data)
        folders = set()
        for path_ in paths:
            folder_name = path_.split('/')[-2]
            folders.add(folder_name)
        folders = list(folders)

        #data normalization, 2s/wav file
        for folder in folders:
            paths = list_files(path_to_data + folder + '/')
            audios = AudioSegment.empty()

            #read wav file and remove it
            for path_ in paths:
                wav = AudioSegment.from_wav(path_)
                audios += wav
                os.remove(path_)

            L = len(audios)
            N = int(L / 2000)

            for i in range(N):
                wav = audios[i * 2000:(i + 1) * 2000]
                wav.export(path_to_data + folder + '/{}.wav'.format(i),
                           format='wav')

            #destroy
            del audios
            del L
            del N

    except Exception as e:
        print('Error: ', e)
Exemplo n.º 26
0
def compruebeTXT(pathImages):
	listaFicheros = list(paths.list_files(pathImages,validExts=(".jpg")))
	for file in listaFicheros:
		ficheroAnotaciones = file.split(".jpg")[0] + ".txt"
		if(os.path.exists(ficheroAnotaciones)):
			print('Todo correcto, continuamos')
		else:
			print('No existe el fichero de anotaciones')
Exemplo n.º 27
0
def main(trainingSetPath, testingSetPath, cell_size=8, bin_size=8):

    # initialize the local binary patterns descriptor along with the data and label lists
    labels = []
    data = []
    test_labels = []
    test_data = []

    # loop over the training images
    for imagePath in paths.list_files(trainingSetPath,
                                      validExts=(".png", ".ppm")):

        # open image
        img = cv2.imread(imagePath, cv2.IMREAD_GRAYSCALE)
        # resized_image = cv2.resize(img, (32, 32))  # RESIZING

        # get hog features
        hog = descriptor(img, cell_size=cell_size, bin_size=bin_size)
        vector, image = hog.extract()
        # vector = vector / max(vector)  # NORMALAZING
        print len(vector)

        # extract the label from the image path, then update the
        # label and data lists
        labels.append(imagePath.split("/")[-2])
        data.append(vector)

    # loop over the testing images
    for imagePath in paths.list_files(testingSetPath,
                                      validExts=(".png", ".ppm")):

        # open image
        img = cv2.imread(imagePath, cv2.IMREAD_GRAYSCALE)
        # resized_image = cv2.resize(img, (32, 32))  # RESIZING

        # get hog features
        hog = descriptor(img, cell_size=cell_size, bin_size=bin_size)
        vector, image = hog.extract()
        # vector = vector / max(vector)  # NORMALAZING
        print len(vector)

        # extract the label from the image path, then update the
        # label and data lists
        test_labels.append(imagePath.split("/")[-2])
        test_data.append(vector)
Exemplo n.º 28
0
    def transform(self):
        listaFicheros_train = list(
            paths.list_files(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME,
                                          "train"),
                             validExts=(".jpg")))
        listaFicheros_test = list(
            paths.list_files(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME,
                                          "test"),
                             validExts=(".jpg")))

        outputPath = os.path.join(self.OUTPUT_PATH,
                                  "VOC" + self.DATASET_NAME + "_" + self.model)
        # outputPath = os.path.join(self.OUTPUT_PATH, "VOC" + self.DATASET_NAME)

        shutil.copytree(
            os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, "train",
                         "JPEGImages"), os.path.join(outputPath, "JPEGImages"))
        shutil.copytree(
            os.path.join(self.OUTPUT_PATH, self.DATASET_NAME,
                         "train", "Annotations"),
            os.path.join(outputPath, "Annotations"))
        if (not (os.path.exists(os.path.join(outputPath, "ImageSets")))):
            os.makedirs(os.path.join(outputPath, "ImageSets", "Main"))

        shutil.copy(
            os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, "classes.names"),
            outputPath)
        traintxt = open(
            os.path.join(outputPath, "ImageSets", "Main", "train.txt"), "w")
        testtxt = open(
            os.path.join(outputPath, "ImageSets", "Main", "test.txt"), "w")
        for f_train in listaFicheros_train:
            name = os.path.basename(f_train).split('.')[0]
            traintxt.write(name + "\n")
        for f_test in listaFicheros_test:
            name = os.path.basename(f_test).split('.')[0]
            testtxt.write(name + "\n")
            shutil.copy(f_test, os.path.join(outputPath, "JPEGImages"))

            ficherolabel = f_test[0:f_test.rfind('.')] + '.xml'
            ficherolabel = ficherolabel.replace(
                "JPEGImages",
                "Annotations")  # obetenemos el nombre de los ficheros
            shutil.copy(ficherolabel, os.path.join(outputPath, "Annotations"))
Exemplo n.º 29
0
def mainDataset(imagesPath):
    # Leemos el parametro pasado por linea de comandos
    #arg1 = sys.argv[1]
    # Invocamos a la funcion con dichos parametros y mostramos el resultado por pantalla
    images = list(
        paths.list_files(imagesPath,
                         validExts=(".jpg", ".jpeg", ".png", ".bmp", ".tiff",
                                    ".tif")))
    for image in images:
        generateXMLFromImage(image)
Exemplo n.º 30
0
    def transform(self):
        listaFicheros_train = list(paths.list_files(os.path.join(self.OUTPUT_PATH,self.DATASET_NAME,"train"), validExts=(".jpg")))
        listaFicheros_test = list(paths.list_files(os.path.join(self.OUTPUT_PATH,self.DATASET_NAME,"test"), validExts=(".jpg")))

        outputPath = os.path.join(self.OUTPUT_PATH, "VOC" + self.DATASET_NAME+"_"+str(self.model))
        # outputPath = os.path.join(self.OUTPUT_PATH, "VOC" + self.DATASET_NAME)

        shutil.copytree(os.path.join(self.OUTPUT_PATH,self.DATASET_NAME,"train","JPEGImages"), os.path.join(outputPath, "JPEGImages"))
        shutil.copytree(os.path.join(self.OUTPUT_PATH,self.DATASET_NAME,"train","Annotations"), os.path.join(outputPath, "Annotations"))
        if (not (os.path.exists(os.path.join(outputPath, "ImageSets")))):
            os.makedirs(os.path.join(outputPath, "ImageSets", "Main"))

        shutil.copy(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, "classes.names"), outputPath)

        classescsv = open(os.path.join(outputPath,"classes.csv"), "w")
        with open(os.path.join(outputPath,"classes.names")) as f:
            classes = f.read()
            classes = classes.split('\n')
        rows = [",".join([c, str(i)]) for (i, c) in enumerate(classes)]
        classescsv.write("\n".join(rows))
        classescsv.close()

        traintxt = open(os.path.join(outputPath, "ImageSets", "Main", "train.txt"), "w")
        testtxt = open(os.path.join(outputPath, "ImageSets", "Main", "test.txt"), "w")
        shutil.copy(os.path.join(outputPath,"classes.csv"), os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, self.DATASET_NAME + "_classes.csv"))

        """classescsv = open(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, self.DATASET_NAME + "_classes.csv"), "w")
        classes = [cl for cl in open(os.path.join(self.OUTPUT_PATH, self.DATASET_NAME, "classes.names"))]
        rows = [c.replace('\n','')+","+ str(i)+"\n" for (i, c) in enumerate(classes) if i!=len(classes)-1]
        for row in rows:
            classescsv.write(row)
        classescsv.close()"""
        for f_train in listaFicheros_train:
            name = os.path.basename(f_train).split('.')[0]
            traintxt.write(name + "\n")
        for f_test in listaFicheros_test:
            name = os.path.basename(f_test).split('.')[0]
            testtxt.write(name + "\n")
            shutil.copy(f_test, os.path.join(outputPath, "JPEGImages"))

            ficherolabel = f_test[0:f_test.rfind('.')] + '.xml'
            ficherolabel = ficherolabel.replace("JPEGImages", "Annotations")  # obetenemos el nombre de los ficheros
            shutil.copy(ficherolabel, os.path.join(outputPath, "Annotations"))