Exemplo n.º 1
0
def main():
    # Test
    print("Testing MaxHeap...")
    test_times = 100
    run_time_1 = run_time_2 = 0
    for _ in range(test_times):
        # Generate dataset randomly
        low = 0
        high = 1000
        n_rows = 10000
        k = 100
        nums = gen_data(low, high, n_rows)

        # Build Max Heap
        heap = MaxHeap(k, lambda x: x)
        start = time()
        for num in nums:
            heap.add(num)
        ret1 = copy(heap._items)
        run_time_1 += time() - start

        # Exhausted search
        start = time()
        ret2 = exhausted_search(nums, k)
        run_time_2 += time() - start

        # Compare result
        ret1.sort()
        assert ret1 == ret2, "target:%s\nk:%d\nrestult1:%s\nrestult2:%s\n" % (
            str(nums), k, str(ret1), str(ret2))
    print("%d tests passed!" % test_times)
    print("Max Heap Search %.2f s" % run_time_1)
    print("Exhausted search %.2f s" % run_time_2)
Exemplo n.º 2
0
def main():
    print("Testing K nearest search...")
    test_times = 100
    run_time_1 = run_time_2 = 0
    for _ in range(test_times):
        # Generate dataset randomly
        low = 0
        high = 100
        n_rows = 1000
        n_cols = 2
        X = gen_data(low, high, n_rows, n_cols)
        y = gen_data(low, high, n_rows)
        Xi = gen_data(low, high, n_cols)

        # Build KNN
        k = 2
        model = KNeighborsBase()
        model.fit(X, y, k_neighbors=k)

        # KD Tree Search
        start = time()
        heap = model._knn_search(Xi)
        run_time_1 += time() - start
        ret1 = [get_euclidean_distance(Xi, nd.split[0]) for nd in heap.items]
        ret1.sort()

        # Exhausted search
        start = time()
        ret2 = exhausted_search(X, Xi, k)
        run_time_2 += time() - start
        ret2 = [get_euclidean_distance(Xi, row) for row in ret2]
        ret2.sort()

        # Compare result
        assert ret1 == ret2, "target:%s\nrestult1:%s\nrestult2:%s\ntree:\n%s" \
            % (Xi, ret1, ret2, model.tree)

    print("%d tests passed!" % test_times)
    print("KNN Search %.2f s" % run_time_1)
    print("Exhausted search %.2f s" % run_time_2)
Exemplo n.º 3
0
def main():
    print("Testing KD Tree...")
    test_times = 100
    run_time_1 = run_time_2 = 0
    for _ in range(test_times):
        # Generate dataset randomly
        low = 0
        high = 100
        n_rows = 1000
        n_cols = 2
        X = gen_data(low, high, n_rows, n_cols)
        y = gen_data(low, high, n_rows)
        Xi = gen_data(low, high, n_cols)

        # Build KD Tree
        tree = KDTree()
        tree.build_tree(X, y)

        # KD Tree Search
        start = time()
        nd = tree.nearest_neighbour_search(Xi)
        run_time_1 += time() - start
        ret1 = get_eu_dist(Xi, nd.split[0])

        # Exhausted search
        start = time()
        row = exhausted_search(X, Xi)
        run_time_2 += time() - start
        ret2 = get_eu_dist(Xi, row)

        # Compare result
        assert ret1 == ret2, "target:%s\nrestult1:%s\nrestult2:%s\ntree:\n%s" \
            % (Xi, nd, row, tree)
    print("%d tests passed!" % test_times)
    print("KD Tree Search %.2f s" % run_time_1)
    print("Exhausted search %.2f s" % run_time_2)