def batch(): print("Tesing the accuracy of LinearRegression(batch)...") # Train model reg = LinearRegression() reg.fit(X=X_train, y=y_train, lr=0.02, epochs=5000) # Model accuracy get_r2(reg, X_test, y_test)
def stochastic(): print("Tesing the accuracy of LinearRegression(stochastic)...") # Train model reg = LinearRegression() reg.fit(X=X_train, y=y_train, lr=0.001, epochs=1000, method="stochastic", sample_rate=0.5) # Model accuracy get_r2(reg, X_test, y_test)
def main(): print("Tesing the accuracy of KNN regressor...") # Load data X, y = load_boston_house_prices() # Split data randomly, train set rate 70% X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) # Train model reg = KNeighborsRegressor() reg.fit(X=X_train, y=y_train, k_neighbors=3) # Model accuracy get_r2(reg, X_test, y_test)
def main(): print("Tesing the accuracy of RegressionTree...") # Load data X, y = load_boston_house_prices() # Split data randomly, train set rate 70% X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) # Train model reg = RegressionTree() reg.fit(X=X_train, y=y_train, max_depth=5) # Show rules reg.rules # Model accuracy get_r2(reg, X_test, y_test)
def main(): print("Tesing the accuracy of GBDT regressor...") # Load data X, y = load_boston_house_prices() # Split data randomly, train set rate 70% X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) # Train model reg = GradientBoostingRegressor() reg.fit(X=X_train, y=y_train, n_estimators=4, lr=0.5, max_depth=2, min_samples_split=2) # Model accuracy get_r2(reg, X_test, y_test)
def main(): print("Tesing the accuracy of Ridge Regressor(stochastic)...") # Load data X, y = load_boston_house_prices() X = min_max_scale(X) # Split data randomly, train set rate 70% X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) # Train model reg = Ridge() reg.fit(X=X_train, y=y_train, lr=0.001, epochs=1000, method="stochastic", sample_rate=0.5, alpha=1e-7) # Model accuracy get_r2(reg, X_test, y_test)