Exemplo n.º 1
0
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 1000000):
        # add your code to do learning here
        (normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
         sma_cross) = indicators(sd=sd,
                                 ed=ed,
                                 syms=[symbol],
                                 allocs=[1],
                                 sv=sv,
                                 gen_plot=False)

        norm_val = normalized_values.copy()
        normalized_values = pd.DataFrame(data=pd.qcut(normalized_values,
                                                      10,
                                                      labels=False),
                                         index=normalized_values.index)
        bbp = pd.DataFrame(data=pd.qcut(bbp, 10, labels=False),
                           index=bbp.index)
        moving_avarage = pd.DataFrame(data=pd.qcut(moving_avarage,
                                                   10,
                                                   labels=False),
                                      index=moving_avarage.index)
        rsi_val = pd.DataFrame(data=pd.qcut(rsi_val, 10, labels=False),
                               index=rsi_val.index)
        rsi_spy = pd.DataFrame(data=pd.qcut(rsi_spy, 10, labels=False),
                               index=rsi_spy.index)
        momentum = pd.DataFrame(data=pd.qcut(momentum, 10, labels=False),
                                index=momentum.index)
        sma_cross = pd.DataFrame(data=pd.cut(sma_cross, 3, labels=False),
                                 index=sma_cross.index)
        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]

        self.prices = normalized_values.copy()

        state_size = 7
        action_size = 5

        max_iter = 600
        actions_df = pd.DataFrame(index=states.index, data=[0] * len(states))
        iter_num = 0
        converged = False

        dates = pd.date_range(sd, ed)
        self.prices_all = ut.get_data([symbol], dates)[symbol]

        agent = DQNAgent(state_size, action_size)
        batch_size = 32

        for e in range(max_iter):

            print("Va por la iteracion ", e)

            holdings_actions = 0
            syms = [symbol]
            X = np.array([states.iloc[0]])
            action = 2

            for key, row in states.iloc[1:].iterrows():

                (reward, holdings_actions) = self.calculate_reward(
                    holdings_actions_1=holdings_actions,
                    action=action,
                    key=key)

                #next_state, reward, done, _ = self.calculate_reward(action)
                #reward = reward if not done else -10

                next_state = np.array([row])

                agent.remember(X, action, reward, next_state)

                #if done:
                #    agent.update_target_model()
                #    print("episode: {}/{}, score: {}, e: {:.2}"
                #      .format(e, EPISODES, time, agent.epsilon))
                #    break

                if len(agent.memory) > batch_size:
                    agent.replay(batch_size)

                X = np.array([row])

                holdings_actions_1 = holdings_actions

                action = agent.act(X)

                actions_df.loc[key, iter_num] = holdings_actions

            iter_num += 1
            #Check convergence
            converged = False
        pdb.set_trace()
        previous_days = 13
        trades = pd.DataFrame(
            data=actions_df.iloc[:, -1],
            index=actions_df.index).diff().shift(-1).fillna(0)
        #trades = pd.concat([pd.DataFrame(data=[[0]]*previous_days,index=normalized_values.index[0:previous_days],columns=trades.columns.tolist()),trades])

        #trades = pd.concat([pd.DataFrame(data=actions_df.iloc[0,-1],index=normalized_values.index[0],columns=trades.columns.tolist()),trades])
        #trades = trades.append(pd.DataFrame(data=[actions_df.iloc[:,-1][0]],columns=trades.columns.tolist(),index=[trades.index[0]]))
        trades.sort_index(axis=0, inplace=True)
        trades.iloc[-1] = -1 * trades.iloc[:-1].sum()

        trades.columns = ['Shares']

        trades['Symbol'] = symbol
        trades['Order'] = trades['Shares'].to_frame().applymap(
            lambda x: {
                -2000: 'SELL',
                -1500: 'SELL',
                -1000: 'SELL',
                -500: 'SELL',
                0: 0,
                500: "BUY",
                1000: "BUY",
                1500: "BUY",
                2000: "BUY"
            }[x])
        trades['Shares'] = trades['Shares'].abs()
        trades['Date'] = trades.index
        self.agent = agent
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2008,1,1), \
        ed=dt.datetime(2009,1,1), \
        sv = 1000000):
        # add your code to do learning here
        (normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
         sma_cross) = indicators(sd=sd,
                                 ed=ed,
                                 syms=[symbol],
                                 allocs=[1],
                                 sv=sv,
                                 gen_plot=False)

        norm_val = normalized_values.copy()

        normalized_values = pd.DataFrame(data=pd.qcut(normalized_values,
                                                      10,
                                                      labels=False),
                                         index=normalized_values.index)
        bbp = pd.DataFrame(data=pd.qcut(bbp, 10, labels=False),
                           index=bbp.index)
        moving_avarage = pd.DataFrame(data=pd.qcut(moving_avarage,
                                                   10,
                                                   labels=False),
                                      index=moving_avarage.index)
        rsi_val = pd.DataFrame(data=pd.qcut(rsi_val, 10, labels=False),
                               index=rsi_val.index)
        rsi_spy = pd.DataFrame(data=pd.qcut(rsi_spy, 10, labels=False),
                               index=rsi_spy.index)
        momentum = pd.DataFrame(data=pd.qcut(momentum, 10, labels=False),
                                index=momentum.index)
        sma_cross = pd.DataFrame(
            data=pd.cut(sma_cross, 3, labels=False),
            index=sma_cross.index)  # REVISAR ESTE , CREO QUE ESTA MAL
        #start             = pd.DataFrame(data=[[0] + [1]*(len(sma_cross)-1)][0],index=normalized_values.index)

        #states            = pd.concat([normalized_values,bbp,moving_avarage,rsi_val,rsi_spy,momentum,sma_cross],axis=1).apply(lambda x : x.fillna(0).astype(int).astype(str).str.cat(),axis=1).to_frame().iloc[13:,:]

        states = pd.concat(
            [bbp, moving_avarage, rsi_val, rsi_spy, momentum, sma_cross],
            axis=1).apply(
                lambda x: x.fillna(0).astype(int).astype(str).str.cat(),
                axis=1).to_frame().iloc[13:, :]

        robot = Ql.QLearner(
            num_states=(10**6) + (10**5) + (10**4) + (10**3) + (10**2) + 3,
            num_actions=5
        )  # PENDIENTE MEJORAR PARA QUE SEA DEL TAMANIO DE LAS BINS FILA 29 a la 35

        max_iter = 5000
        actions_df = pd.DataFrame(index=states.index, data=[0] * len(states))
        iter_num = 0
        converged = False
        dates = pd.date_range(sd, ed)
        prices_all = ut.get_data([symbol], dates)[symbol]

        while not converged and iter_num < max_iter:
            #pdb.set_trace()

            holdings_actions = 0
            syms = [symbol]
            X = int(states.iloc[0])
            action = 2  #robot.querysetstate(int(states.iloc[0]))

            holdings_actions_1 = 0

            for key, row in states.iterrows():

                #pdb.set_trace()

                #change = ((norm_val.loc[key]/norm_val.iloc[norm_val.index.get_loc(key)-1])-1).values[0]

                #holdings.append(holdings[-1] + holdings_actions*prices_all.loc[key])

                #reward = ((holdings[-1]/(holdings[-2]+holdings_actions*prices_all[prices_all.index.get_loc(key)-1])-1)*1000)

                holdings_actions = {
                    0: 1000,
                    1: 500,
                    2: 0,
                    3: -500,
                    4: -1000
                }[action]
                if (key == states.index[0]):
                    holdings_diff = 0

                else:

                    price_t = prices_all.iloc[prices_all.index.get_loc(key) -
                                              1]
                    price_t_plus_1 = prices_all.loc[key]
                    cash = -1 * (holdings_actions -
                                 holdings_actions_1) * price_t
                    holdings_diff = holdings_actions * price_t_plus_1 - holdings_actions_1 * price_t + cash

                if (holdings_actions_1 - holdings_actions) != 0:
                    holdings_diff = holdings_diff - self.commission

                reward = holdings_diff

                X = int(states.loc[key])

                holdings_actions_1 = holdings_actions

                action = robot.query(X, reward)

                actions_df.loc[key, iter_num] = holdings_actions

                #holdings_actions[1] = holdings_actions[1]*(1-self.impact)

            iter_num += 1
            #Check convergence
            converged = False
        pdb.set_trace()
        previous_days = 13
        trades = pd.DataFrame(
            data=actions_df.iloc[:, -1],
            index=actions_df.index).diff().shift(-1).fillna(0)
        #trades = pd.concat([pd.DataFrame(data=[[0]]*previous_days,index=normalized_values.index[0:previous_days],columns=trades.columns.tolist()),trades])
        pdb.set_trace()
        #trades = pd.concat([pd.DataFrame(data=actions_df.iloc[0,-1],index=normalized_values.index[0],columns=trades.columns.tolist()),trades])
        #trades = trades.append(pd.DataFrame(data=[actions_df.iloc[:,-1][0]],columns=trades.columns.tolist(),index=[trades.index[0]]))
        trades.sort_index(axis=0, inplace=True)
        trades.iloc[-1] = -1 * trades.iloc[:-1].sum()

        trades.columns = ['Shares']

        trades['Symbol'] = symbol
        trades['Order'] = trades['Shares'].to_frame().applymap(
            lambda x: {
                -2000: 'SELL',
                -1500: 'SELL',
                -1000: 'SELL',
                -500: 'SELL',
                0: 0,
                500: "BUY",
                1000: "BUY",
                1500: "BUY",
                2000: "BUY"
            }[x])
        trades['Shares'] = trades['Shares'].abs()
        trades['Date'] = trades.index
        self.robot = robot
Exemplo n.º 3
0
    def testPolicy(self, symbol = "IBM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):

        (normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
         sma_cross) = indicators(sd=sd,
                                 ed=ed,
                                 syms=[symbol],
                                 allocs=[1],
                                 sv=sv,
                                 gen_plot=False)

        norm_val = normalized_values.copy()
        normalized_values = pd.DataFrame(data=pd.qcut(normalized_values,
                                                      10,
                                                      labels=False),
                                         index=normalized_values.index)
        bbp = pd.DataFrame(data=pd.qcut(bbp, 10, labels=False),
                           index=bbp.index)
        moving_avarage = pd.DataFrame(data=pd.qcut(moving_avarage,
                                                   10,
                                                   labels=False),
                                      index=moving_avarage.index)
        rsi_val = pd.DataFrame(data=pd.qcut(rsi_val, 10, labels=False),
                               index=rsi_val.index)
        rsi_spy = pd.DataFrame(data=pd.qcut(rsi_spy, 10, labels=False),
                               index=rsi_spy.index)
        momentum = pd.DataFrame(data=pd.qcut(momentum, 10, labels=False),
                                index=momentum.index)
        sma_cross = pd.DataFrame(data=pd.cut(sma_cross, 3, labels=False),
                                 index=sma_cross.index)
        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]
        holdings = pd.DataFrame(data=[0] * len(states), index=states.index)

        pdb.set_trace()
        for key, state in states.iterrows():
            action = self.agent.act(np.array([state]))
            holdings.loc[key] = {
                0: -1000,
                1: -500,
                2: 0,
                3: 500,
                4: 1000
            }[action]

        pdb.set_trace()
        # here we build a fake set of trades
        # your code should return the same sort of data
        #dates = pd.date_range(sd, ed)
        #prices_all = ut.get_data([symbol], dates)  # automatically adds SPY
        #trades = prices_all[[symbol,]]  # only portfolio symbols
        #trades_SPY = prices_all['SPY']  # only SPY, for comparison later
        #trades.values[:,:] = 0 # set them all to nothing
        #trades.values[0,:] = 1000 # add a BUY at the start
        #trades.values[40,:] = -1000 # add a SELL
        #trades.values[41,:] = 1000 # add a BUY
        #trades.values[60,:] = -2000 # go short from long
        #trades.values[61,:] = 2000 # go long from short
        #trades.values[-1,:] = -1000 #exit on the last day
        #if self.verbose: print type(trades) # it better be a DataFrame!
        #if self.verbose: print trades
        if self.verbose: print(prices_all)
        return trades
Exemplo n.º 4
0
    def testPolicy(self,
                   symbol,
                   sd=dt.datetime(2010, 1, 1),
                   ed=dt.datetime(2011, 12, 31),
                   sv=1000000):

        (normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
         sma_cross) = indicators(sd=sd,
                                 ed=ed,
                                 syms=symbol,
                                 allocs=[1 / (len(symbol))] * len(symbol),
                                 sv=sv,
                                 gen_plot=False)

        norm_val2 = pd.DataFrame()
        for i in normalized_values.columns.tolist():

            norm_val = pd.DataFrame(data=normalized_values[i].copy(),
                                    index=normalized_values.index)
            norm_val['2'] = normalized_values[i].diff().fillna(
                0).diff().fillna(0).shift(-1)
            norm_val.ix[norm_val['2'] > 0, '3'] = 1
            norm_val.ix[norm_val['2'] < 0, '3'] = -1
            norm_val['4'] = norm_val['3'] * 1000
            norm_val['5'] = norm_val['4'].diff().fillna(0)
            norm_val.ix[0, '5'] = norm_val.ix[1, '4']
            norm_val.ix[-1, '5'] = -1 * norm_val['5'].sum()
            inicial = 1
            nueva = pd.DataFrame(columns=[i, 'Dates'])

            for key, row in norm_val.iterrows():
                if (abs(row['5']) == 2000):
                    nueva.loc[inicial - 1, i] = row['5'] / 2
                    nueva.loc[inicial - 1, 'Dates'] = key
                    nueva.loc[inicial, i] = 0
                    nueva.loc[inicial, 'Dates'] = key
                    nueva.loc[inicial + 1, i] = row['5'] / 2
                    nueva.loc[inicial + 1, 'Dates'] = key
                    inicial = inicial + 2
                else:
                    nueva.loc[inicial - 1, i] = row['5']
                    nueva.loc[inicial - 1, 'Dates'] = key

                inicial = inicial + 1
            nueva.set_index('Dates', inplace=True)
            nueva.rename_axis(None)
            norm_val2 = pd.concat([norm_val2, nueva])

        pdb.set_trace()
        orders = pd.DataFrame(data=norm_val2[symbol],
                              index=norm_val2.index,
                              columns=symbol)
        orders.columns = ['Shares']
        orders['Date'] = orders.index
        orders['Order'] = 0
        orders.loc[orders['Shares'] == -1000, 'Order'] = 'SELL'
        orders.loc[orders['Shares'] == 1000, 'Order'] = 'BUY'
        orders.loc[orders['Shares'] == -1000, 'Shares'] = 1000
        orders.loc[orders['Shares'] == 1000, 'Shares'] = 1000
        orders['Symbol'] = symbol[0]
        orders.index = range(len(orders))

        market = compute_portvals(orders,
                                  start_val=100000,
                                  commission=0,
                                  impact=0.0)
        assess_portfolio(portfolio=market,
                         sd=sd,
                         ed=ed,
                         syms=symbol,
                         gen_plot=True,
                         allocs=[1],
                         sv=1000000)
        return orders
Exemplo n.º 5
0
    def testPolicy(self,
                   symbol,
                   sd=dt.datetime(2010, 1, 1),
                   ed=dt.datetime(2011, 12, 31),
                   sv=1000000):

        (normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
         sma_cross) = indicators(sd=sd,
                                 ed=ed,
                                 syms=symbol,
                                 allocs=[1],
                                 sv=sv,
                                 gen_plot=False)

        orders = bbp.copy() * 0
        #print(moving_avarage.shape,bbp.shape,rsi_val.shape,rsi_spy.shape)
        #pdb.set_trace()

        orders[(moving_avarage < 0.95) & (bbp < 0) & (rsi_val < 30) &
               (rsi_spy.SPY.tolist() > 30)] = 1000
        orders[(moving_avarage > 1.05) & (bbp > 1) & (rsi_val > 70) &
               (rsi_spy.SPY.tolist() < 70)] = -1000
        orders[(sma_cross != 0)] = 0

        orders.ffill(inplace=True)
        orders.fillna(0, inplace=True)
        norm_val = normalized_values.copy()

        norm_val['2'] = normalized_values.diff().fillna(0).diff().fillna(0)
        norm_val.ix[norm_val['2'] > 0, '3'] = 1
        norm_val.ix[norm_val['2'] < 0, '3'] = -1
        norm_val['4'] = norm_val['3'] * 1000
        norm_val['5'] = norm_val['4'].diff().fillna(0)
        norm_val.ix[0, '5'] = norm_val.ix[1, '4']
        norm_val.ix[-1, '5'] = -1 * norm_val['5'].sum()
        inicial = 0
        nueva = pd.DataFrame(columns=['1', 'Dates'])

        for key, row in norm_val.iterrows():
            if (abs(row['5']) == 2000):
                nueva.loc[inicial, '1'] = row['5'] / 2
                nueva.loc[inicial, 'Dates'] = key
                nueva.loc[inicial + 1, '1'] = row['5'] / 2
                nueva.loc[inicial + 1, 'Dates'] = key
                inicial = inicial + 1
            else:
                nueva.loc[inicial, '1'] = row['5']
                nueva.loc[inicial, 'Dates'] = key

            inicial = inicial + 1
        pdb.set_trace()
        nueva.set_index('Dates', inplace=True)

        orders[1:] = orders.diff()
        orders.ix[0] = 0
        orders.columns = ['Shares']
        orders['Date'] = orders.index
        orders['Order'] = 0
        #pdb.set_trace()
        orders.loc[orders['Shares'] == -1000, 'Order'] = 'SELL'
        orders.loc[orders['Shares'] == 1000, 'Order'] = 'BUY'
        orders.loc[orders['Shares'] == -1000, 'Shares'] = 1000
        orders.loc[orders['Shares'] == 1000, 'Shares'] = 1000
        orders['Symbol'] = symbol[0]
        orders.index = range(len(orders))

        market = compute_portvals(orders,
                                  start_val=100000,
                                  commission=9.95,
                                  impact=0.005)
        pdb.set_trace()
        assess_portfolio(portfolio=market,
                         sd=sd,
                         ed=ed,
                         syms=symbol,
                         gen_plot=True,
                         allocs=[1],
                         sv=1000000)

        return orders
Exemplo n.º 6
0
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2015,1,1), \
        ed=dt.datetime(2017,1,1), \
        sv = 1000000):

        btc = pd.read_csv('COINBASE_FILTERED.CSV')
        size = int(len(btc) * 0.005)

        btc = btc.iloc[-3 * size:-size]

        btc[btc.columns.values] = btc[btc.columns.values].ffill()

        btc['TR'] = 0

        a = btc['High'] - btc['Low']
        b = btc['Low'] - btc['Close'].shift(-1)
        c = btc['High'] - btc['Close'].shift(-1)

        btc['TR'] = pd.concat([a, b, c], axis=1).max(axis=1)
        btc['ATR'] = btc['TR'].ewm(span=10).mean()

        btc['Delta'] = btc['Close'] - btc['Open']

        btc['to_predict'] = btc['Delta'].apply(lambda x: 1 if (x > 0) else 0)

        btc.index = pd.to_datetime(btc['Timestamp'],
                                   infer_datetime_format=True,
                                   unit='s')

        (normalized_values, bbp, moving_avarage, rsi_val, momentum,
         sma_cross) = indicators(data=btc)

        norm_val = normalized_values.copy()

        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]

        self.prices = normalized_values.copy()

        state_size = 6  # Tamanio del vector de estados
        action_size = 5

        max_iter = 10  # Iteraciones Maximas para el  aprendizaje
        actions_df = pd.DataFrame(index=states.index, data=[0] * len(states))
        iter_num = 0
        converged = False

        dates = pd.date_range(sd, ed)
        self.prices_all = btc[
            'Weighted_Price']  #ut.get_data([symbol], dates)[symbol]

        agent = DQNAgent(state_size, action_size)

        batch_size = 2  #64/32

        comienzo = time.time()

        for e in range(max_iter):

            print("Va por la iteracion ", e)

            holdings_actions = 0
            syms = [symbol]
            X = np.array([states.iloc[0]])
            action = 2

            for key, row in states.iloc[1:].iterrows():

                (reward, holdings_actions) = self.calculate_reward(
                    holdings_actions_1=holdings_actions,
                    action=action,
                    key=key)

                next_state = np.array([row])

                agent.remember(X, action, reward, next_state)

                if len(agent.memory) > batch_size:
                    agent.replay(batch_size)
                    X = np.array([row])

                holdings_actions_1 = holdings_actions

                action = agent.act(X)

                actions_df.loc[key, iter_num] = holdings_actions

            iter_num += 1

            converged = False
        print(time.time() - comienzo)
        previous_days = 13
        trades = pd.DataFrame(
            data=actions_df.iloc[:, -1],
            index=actions_df.index).diff().shift(-1).fillna(0)

        trades.sort_index(axis=0, inplace=True)
        trades.iloc[-1] = -1 * trades.iloc[:-1].sum()

        trades.columns = ['Shares']

        trades['Symbol'] = symbol
        trades['Order'] = trades['Shares'].to_frame().applymap(
            lambda x: {
                -2: 'SELL',
                -1.5: 'SELL',
                -1: 'SELL',
                -0.5: 'SELL',
                0: 0,
                0.5: "BUY",
                1: "BUY",
                1.5: "BUY",
                2: "BUY"
            }[x])
        trades['Shares'] = trades['Shares'].abs()
        trades['Date'] = trades.index
        compute_portvals(trades)
        pdb.set_trace()
        self.agent = agent
Exemplo n.º 7
0
    def testPolicy(self, symbol = "IBM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):

        btc = pd.read_csv("COINBASE_FILTERED.CSV")

        size = int(len(btc) * 0.005)
        btc = btc.iloc[-size:]

        btc[btc.columns.values] = btc[btc.columns.values].ffill()

        btc['TR'] = 0

        a = btc['High'] - btc['Low']
        b = btc['Low'] - btc['Close'].shift(-1)
        c = btc['High'] - btc['Close'].shift(-1)

        btc['TR'] = pd.concat([a, b, c], axis=1).max(axis=1)
        btc['ATR'] = btc['TR'].ewm(span=10).mean()

        btc['Delta'] = btc['Close'] - btc['Open']

        btc['to_predict'] = btc['Delta'].apply(lambda x: 1 if (x > 0) else 0)

        btc.index = pd.to_datetime(btc['Timestamp'],
                                   infer_datetime_format=True,
                                   unit='s')

        self.prices_all = btc[
            'Weighted_Price']  #ut.get_data([symbol], dates)[symbol]

        (normalized_values, bbp, moving_avarage, rsi_val, momentum,
         sma_cross) = indicators(data=btc)

        norm_val = normalized_values.copy()

        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]

        actions_df = pd.DataFrame(index=states.index, data=[0] * len(states))

        holdings = pd.DataFrame(data=[0] * len(states), index=states.index)

        for key, state in states.iterrows():
            action = self.agent.act(np.array([state]))

            holdings.loc[key] = {0: -1, 1: -0.5, 2: 0, 3: 0.5, 4: 1}[action]

        pdb.set_trace()

        previous_days = 13
        trades = pd.DataFrame(
            data=actions_df.iloc[:, -1],
            index=actions_df.index).diff().shift(-1).fillna(0)

        trades.sort_index(axis=0, inplace=True)
        trades.iloc[-1] = -1 * trades.iloc[:-1].sum()

        trades.columns = ['Shares']

        trades['Symbol'] = symbol
        trades['Order'] = trades['Shares'].to_frame().applymap(
            lambda x: {
                -2: 'SELL',
                -1.5: 'SELL',
                -1: 'SELL',
                -0.5: 'SELL',
                0: 0,
                0.5: "BUY",
                1: "BUY",
                1.5: "BUY",
                2: "BUY"
            }[x])
        trades['Shares'] = trades['Shares'].abs()
        trades['Date'] = trades.index
        self.agent = agent

        if self.verbose: print(prices_all)
        return trades
import util as ut
import random
from indicators_fun import indicators
import pdb
import QLearner as Ql
from marketsimcode import *

sd = dt.datetime(2008, 1, 1)
ed = dt.datetime(2009, 1, 1)
symbol = 'JPM'
sv = 1000000

(normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
 sma_cross) = indicators(sd=sd,
                         ed=ed,
                         syms=[symbol],
                         allocs=[1],
                         sv=sv,
                         gen_plot=False)

nuevo = normalized_values.diff().shift(-1).fillna(0).applymap(lambda x: 1
                                                              if x > 0 else 0)

nuevo.columns = ['Y']

data = pd.concat([
    normalized_values, bbp, moving_avarage, rsi_val, rsi_spy, momentum,
    sma_cross, nuevo
],
                 axis=1)
data.columns = [
    'normalized_values', 'bbp', 'moving_avarage', 'rsi_val', 'rsi_spy',
Exemplo n.º 9
0
    def addEvidence(self, symbol = "IBM", \
        sd=dt.datetime(2015,1,1), \
        ed=dt.datetime(2017,1,1), \
        sv = 1000000):
        # add your code to do learning here

        btc = pd.read_csv(
            "coinbaseUSD_1-min_data_2014-12-01_to_2018-06-27.csv")

        size = int(len(btc) * 0.1)

        btc = btc.iloc[-3 * size:-size]

        btc[btc.columns.values] = btc[btc.columns.values].ffill()

        btc['TR'] = 0

        a = btc['High'] - btc['Low']
        b = btc['Low'] - btc['Close'].shift(-1)
        c = btc['High'] - btc['Close'].shift(-1)

        btc['TR'] = pd.concat([a, b, c], axis=1).max(axis=1)
        btc['ATR'] = btc['TR'].ewm(span=10).mean()

        btc['Delta'] = btc['Close'] - btc['Open']

        btc['to_predict'] = btc['Delta'].apply(lambda x: 1 if (x > 0) else 0)

        btc.index = pd.to_datetime(btc['Timestamp'],
                                   infer_datetime_format=True,
                                   unit='s')

        (normalized_values, bbp, moving_avarage, rsi_val, momentum,
         sma_cross) = indicators(data=btc)

        norm_val = normalized_values.copy()
        #normalized_values = pd.DataFrame(data=pd.qcut(normalized_values,10,labels=False),index=normalized_values.index)
        #bbp               = pd.DataFrame(data=pd.qcut(bbp,10,labels=False),index=bbp.index)
        #moving_avarage    = pd.DataFrame(data=pd.qcut(moving_avarage,10,labels=False),index=moving_avarage.index)
        #rsi_val           = pd.DataFrame(data=pd.qcut(rsi_val,10,labels=False),index=rsi_val.index)
        #       # rsi_spy           = pd.DataFrame(data=pd.qcut(rsi_spy,10,labels=False),index=rsi_spy.index)
        #momentum          = pd.DataFrame(data=pd.qcut(momentum,10,labels=False),index=momentum.index)
        #sma_cross         = pd.DataFrame(data=pd.cut(sma_cross,3,labels=False),index=sma_cross.index)
        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]

        self.prices = normalized_values.copy()

        state_size = 6
        action_size = 5

        max_iter = 1
        actions_df = pd.DataFrame(index=states.index, data=[0] * len(states))
        iter_num = 0
        converged = False

        dates = pd.date_range(sd, ed)
        self.prices_all = btc[
            'Weighted_Price']  #ut.get_data([symbol], dates)[symbol]

        agent = DQNAgent(state_size, action_size)

        batch_size = 64

        for e in range(max_iter):

            print("Va por la iteracion ", e)

            holdings_actions = 0
            syms = [symbol]
            X = np.array([states.iloc[0]])
            action = 2

            for key, row in states.iloc[1:].iterrows():

                (reward, holdings_actions) = self.calculate_reward(
                    holdings_actions_1=holdings_actions,
                    action=action,
                    key=key)

                #next_state, reward, done, _ = self.calculate_reward(action)
                #reward = reward if not done else -10

                next_state = np.array([row])

                agent.remember(X, action, reward, next_state)

                #if done:
                #    agent.update_target_model()
                #    print("episode: {}/{}, score: {}, e: {:.2}"
                #      .format(e, EPISODES, time, agent.epsilon))
                #    break

                if len(agent.memory) > batch_size:
                    agent.replay(batch_size)

                X = np.array([row])

                holdings_actions_1 = holdings_actions

                action = agent.act(X)

                actions_df.loc[key, iter_num] = holdings_actions

            iter_num += 1
            #Check convergence
            converged = False
        pdb.set_trace()
        previous_days = 13
        trades = pd.DataFrame(
            data=actions_df.iloc[:, -1],
            index=actions_df.index).diff().shift(-1).fillna(0)

        trades.sort_index(axis=0, inplace=True)
        trades.iloc[-1] = -1 * trades.iloc[:-1].sum()

        trades.columns = ['Shares']

        trades['Symbol'] = symbol
        trades['Order'] = trades['Shares'].to_frame().applymap(
            lambda x: {
                -2000: 'SELL',
                -1500: 'SELL',
                -1000: 'SELL',
                -500: 'SELL',
                0: 0,
                500: "BUY",
                1000: "BUY",
                1500: "BUY",
                2000: "BUY"
            }[x])
        trades['Shares'] = trades['Shares'].abs()
        trades['Date'] = trades.index
        self.agent = agent
Exemplo n.º 10
0
    def testPolicy(self, symbol = "IBM", \
        sd=dt.datetime(2009,1,1), \
        ed=dt.datetime(2010,1,1), \
        sv = 10000):

        btc = pd.read_csv(
            "coinbaseUSD_1-min_data_2014-12-01_to_2018-06-27.csv")

        size = int(len(btc) * 0.1)
        btc = btc.iloc[-size:]

        btc[btc.columns.values] = btc[btc.columns.values].ffill()

        btc['TR'] = 0

        a = btc['High'] - btc['Low']
        b = btc['Low'] - btc['Close'].shift(-1)
        c = btc['High'] - btc['Close'].shift(-1)

        btc['TR'] = pd.concat([a, b, c], axis=1).max(axis=1)
        btc['ATR'] = btc['TR'].ewm(span=10).mean()

        btc['Delta'] = btc['Close'] - btc['Open']

        btc['to_predict'] = btc['Delta'].apply(lambda x: 1 if (x > 0) else 0)

        btc.index = pd.to_datetime(btc['Timestamp'],
                                   infer_datetime_format=True,
                                   unit='s')

        self.prices_all = btc[
            'Weighted_Price']  #ut.get_data([symbol], dates)[symbol]

        (normalized_values, bbp, moving_avarage, rsi_val, momentum,
         sma_cross) = indicators(data=btc)

        #(normalized_values ,bbp,moving_avarage,rsi_val,rsi_spy,momentum,sma_cross) = indicators(sd=sd,ed=ed,syms=[symbol],allocs=[1],sv=sv,gen_plot=False)

        norm_val = normalized_values.copy()
        #normalized_values = pd.DataFrame(data=pd.qcut(normalized_values,10,labels=False),index=normalized_values.index)
        #bbp               = pd.DataFrame(data=pd.qcut(bbp,10,labels=False),index=bbp.index)
        #moving_avarage    = pd.DataFrame(data=pd.qcut(moving_avarage,10,labels=False),index=moving_avarage.index)
        #rsi_val           = pd.DataFrame(data=pd.qcut(rsi_val,10,labels=False),index=rsi_val.index)
        ##rsi_spy           = pd.DataFrame(data=pd.qcut(rsi_spy,10,labels=False),index=rsi_spy.index)
        #momentum          = pd.DataFrame(data=pd.qcut(momentum,10,labels=False),index=momentum.index)
        #sma_cross         = pd.DataFrame(data=pd.cut(sma_cross,3,labels=False),index=sma_cross.index)
        states = pd.concat([
            normalized_values, bbp, moving_avarage, rsi_val, momentum,
            sma_cross
        ],
                           axis=1).apply(lambda x: x.fillna(0)).iloc[13:, :]
        holdings = pd.DataFrame(data=[0] * len(states), index=states.index)

        pdb.set_trace()
        for key, state in states.iterrows():
            action = self.agent.act(np.array([state]))
            holdings.loc[key] = {
                0: -1000,
                1: -500,
                2: 0,
                3: 500,
                4: 1000
            }[action]

        pdb.set_trace()
        # here we build a fake set of trades
        # your code should return the same sort of data
        #dates = pd.date_range(sd, ed)
        #prices_all = ut.get_data([symbol], dates)  # automatically adds SPY
        #trades = prices_all[[symbol,]]  # only portfolio symbols
        #trades_SPY = prices_all['SPY']  # only SPY, for comparison later
        #trades.values[:,:] = 0 # set them all to nothing
        #trades.values[0,:] = 1000 # add a BUY at the start
        #trades.values[40,:] = -1000 # add a SELL
        #trades.values[41,:] = 1000 # add a BUY
        #trades.values[60,:] = -2000 # go short from long
        #trades.values[61,:] = 2000 # go long from short
        #trades.values[-1,:] = -1000 #exit on the last day
        #if self.verbose: print type(trades) # it better be a DataFrame!
        #if self.verbose: print trades
        if self.verbose: print(prices_all)
        return trades