Exemplo n.º 1
0
def case11():
    y0 = [[1,7],[2,6]]
    t_tuple = 2
    stepsize = 0.01
    order = 2
    maxorder = 2
    # start = time.time()
    t_list, y_list = simulation_ode(mode2_1, y0, t_tuple, stepsize, eps=0)

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0])
        print(tpar_list[i][-1])
        print(ypar_list[i][0])
        print(ypar_list[i][-1])
    G,labels = infer_dynamic_modes_pie(tpar_list, ypar_list, stepsize, maxorder, 0.02)
    # modes, coefs, mdors = infer_dynamic_modes_ex(tpar_list, ypar_list, stepsize, maxorder, 0.01)
    # print(modes)
    # print(coefs)
    # print(mdors)
    print(len(labels))
    print(G)
Exemplo n.º 2
0
def case4():
    y0 = [[5,5,5],[2,2,2]]
    t_tuple = 5
    stepsize = 0.01
    maxorder = 2
    t_list, y_list = simulation_ode(fvdp3_3, y0, t_tuple, stepsize, eps=0)
    draw3D(y_list)
    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    G,labels = infer_dynamic_modes_pie(tpar_list, ypar_list, stepsize, maxorder, 0.02)
    print(labels)
    print(G)
Exemplo n.º 3
0
def case1():
    y0 = [[1,7]]
    t_tuple = 25
    stepsize = 0.01
    order = 2
    maxorder = 4

    # start = time.time()
    t_list, y_list = simulation_ode(mode2_1, y0, t_tuple, stepsize, eps=0)
    # end_simulation = time.time()
    # result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(t_list, y_list, stepsize, order)
    # end_inference = time.time()

    # print(result_coef)
    # print()
    # print("Total time: ", end_inference-start)
    # print("Simulation time: ", end_simulation-start)
    # print("Calc-diff time: ", calcdiff_time)
    # print("Pseudoinv time: ", pseudoinv_time)

    tpar_list,ypar_list = parti(t_list,y_list,0.05)
    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0],tpar_list[i][-1])
        print(ypar_list[i][0],ypar_list[i][-1])

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    # result_coef, calcdiff_time, pseudoinv_time = infer_dynamic([tpar_list[0],tpar_list[1]], [ypar_list[0],ypar_list[1]], stepsize, 4)
    # print(result_coef)
    # tstart = time.time()
    # comt,comy = simulation_ode_stiff(ode_test(result_coef,4), [ypar_list[0][0],ypar_list[1][0]], [(tpar_list[0][0], tpar_list[0][-1]),(tpar_list[1][0], tpar_list[1][-1])], stepsize,eps=0)
    # tend = time.time()
    # print(dist(comy,[ypar_list[0],ypar_list[1]]))
    # print(tend-tstart)
    # print(dist([ypar_list[0],ypar_list[2],ypar_list[4]],comy))
    # result_coef = np.matrix([[ 0, 0, 0, -0.26, 0.26, 0], [0, 0, 0, 0, 0, -1]])
    # comt,comy = simulation_ode(ode_test(result_coef,2), [ypar_list[0][0],ypar_list[2][0],ypar_list[4][0]], [(tpar_list[0][0], tpar_list[0][-1]),(tpar_list[2][0], tpar_list[2][-1]),(tpar_list[4][0], tpar_list[4][-1])], stepsize,eps=0)
    # print(dist([ypar_list[0],ypar_list[2],ypar_list[4]],comy))
    # result_coef = np.matrix([[ 0, 0, 0, -0.26, 0.26, 0], [0, 0, 0, 0, 0, 1]])
    # comt,comy = simulation_ode(ode_test(result_coef,2), [ypar_list[1][0],ypar_list[3][0],ypar_list[5][0]], [(tpar_list[1][0], tpar_list[1][-1]),(tpar_list[3][0], tpar_list[3][-1]),(tpar_list[5][0], tpar_list[5][-1])], stepsize,eps=0)
    # print(dist([ypar_list[1],ypar_list[3],ypar_list[5]],comy))
    tstart = time.time()
    modes, coefs, mdors = infer_dynamic_modes_ex(tpar_list, ypar_list, stepsize, maxorder, 0.001)
    # modes, coefs, mdors = infer_dynamic_modes_exx(tpar_list, ypar_list, stepsize, maxorder, 0.01)
    tend = time.time()
    print(modes)
    print(coefs)
    print(mdors)
    print(tend-tstart)
Exemplo n.º 4
0
def case5():
    y0 = [[0,0],[1,0]]
    t_tuple = 2
    stepsize = 0.01
    order = 2
    maxorder = 3

    
    t_list, y_list = simulation_ode(conti_test, y0, t_tuple, stepsize, eps=0)
    
    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)

    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0])
        print(tpar_list[i][-1])
        print(ypar_list[i][0])
        print(ypar_list[i][-1])

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    # modes, coefs, mdors = infer_dynamic_modes_ex(tpar_list, ypar_list, stepsize, maxorder, 0.01)
    # modes, coefs, mdors = infer_dynamic_modes_exx(tpar_list, ypar_list, stepsize, maxorder, 0.01)
    # print(modes)
    # print(coefs)
    # print(mdors)
    ttest_list=[]
    ttest_list.append(tpar_list[0])
    ttest_list.append(tpar_list[1])
    ytest_list=[]
    ytest_list.append(ypar_list[0])
    ytest_list.append(ypar_list[1])
    A, b = diff_method(ttest_list, ytest_list, 3, stepsize)
    g = pinv2(A).dot(b)
    print(g.T)
    t_start = tpar_list[0][0]
    t_end = tpar_list[0][-1]
    t_start = 0
    t_end = 0.01
    t_points = np.arange(t_start, t_end + stepsize, stepsize)
    tstart = time.time()
    y_object = solve_ivp(ode_test(g.T,3), (t_start, t_end+stepsize), ypar_list[0][0], t_eval = t_points, rtol=1e-7, atol=1e-9)
    y_points = y_object.y.T
    tend = time.time()
    print(y_points)
    print(tend-tstart)
Exemplo n.º 5
0
def case9():
    y0 = [[4.7,0.2,-6,0,0,3]]
    t_tuple = [(0,10)]
    stepsize = 0.001
    maxorder = 1
    # start = time.time()
    t_list, y_list = simulation_ode_2([mmode1, mmode2], event3, y0, t_tuple, stepsize)
    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    print(tpar_list[0].shape)
    tt = [tpar_list[0],tpar_list[2],tpar_list[4]]
    yy = [ypar_list[0],ypar_list[2],ypar_list[4]]
    A ,b = diff_method1(tt, yy, maxorder, stepsize)
    # # clf = linear_model.LinearRegression(fit_intercept=False,normalize=True)
    # # clf.fit(A,b)
    # # g = clf.coef_
    # bb = clf.predict(A)
    g = pinv2(A).dot(b)

    print("g=",g.T)
Exemplo n.º 6
0
def case9():
    y0 = [[0,0]]
    t_tuple = 7
    stepsize = 0.001
    order = 2
    maxorder = 4
    t_list, y_list = simulation_ode(mode2_11, y0, t_tuple, stepsize, eps=0)

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0])
        print(tpar_list[i][-1])
        print(ypar_list[i][0])
        print(ypar_list[i][-1])
    labels = infer_dynamic_modes_ex_dbs(tpar_list, ypar_list, stepsize, maxorder, 0.0001)
    print(labels)
Exemplo n.º 7
0
def case4():
    y0 = [[0,0],[1,0]]
    t_tuple = [(0,2.5),(0,2)]
    stepsize = 0.01
    order = 2
    maxorder = 4

    # start = time.time()
    t_list, y_list = simulation_ode(conti_test, y0, t_tuple, stepsize, eps=0)
    # end_simulation = time.time()
    # result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(t_list, y_list, stepsize, order)
    # end_inference = time.time()

    # print(result_coef)
    # print()
    # print("Total time: ", end_inference-start)
    # print("Simulation time: ", end_simulation-start)
    # print("Calc-diff time: ", calcdiff_time)
    # print("Pseudoinv time: ", pseudoinv_time)

    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0])
        print(tpar_list[i][-1])
        print(ypar_list[i][0])
        print(ypar_list[i][-1])

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    modes, coefs, mdors = infer_dynamic_modes_ex(tpar_list, ypar_list, stepsize, maxorder, 0.0001)
    # modes, coefs, mdors = infer_dynamic_modes_exx(tpar_list, ypar_list, stepsize, maxorder, 0.0001)
    print(modes)
    print(coefs)
    print(mdors)
Exemplo n.º 8
0
def case10():
    y0 = [[0,0],[1,0],[0.3,0],[2.7,0]]
    t_tuple = 2
    stepsize = 0.01
    order = 2
    maxorder = 3

    # start = time.time()
    t_list, y_list = simulation_ode(conti_test, y0, t_tuple, stepsize, eps=0)
    # end_simulation = time.time()
    # result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(t_list, y_list, stepsize, order)
    # end_inference = time.time()

    # print(result_coef)
    # print()
    # print("Total time: ", end_inference-start)
    # print("Simulation time: ", end_simulation-start)
    # print("Calc-diff time: ", calcdiff_time)
    # print("Pseudoinv time: ", pseudoinv_time)

    tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    print(len(tpar_list))
    for i in range(0,len(tpar_list)):
        print(tpar_list[i][0])
        print(tpar_list[i][-1])
        print(ypar_list[i][0])
        print(ypar_list[i][-1])

    for temp_y in y_list:
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        plt.plot(y0_list,y1_list,'b')
    plt.show()
    G,labels = infer_dynamic_modes_pie(tpar_list, ypar_list, stepsize, maxorder, 0.15)
    print(labels)
    print(G)