Exemplo n.º 1
0
def stream(streamer):
    session, inputs, logits = construct_model(
        "../models/deeplab_v3_plus_53_19e_0095", (513, 513), 5)
    parser = Parser()

    cap = cv2.VideoCapture("rtsp://127.0.0.1:5000")

    framerate = 12.0

    out = cv2.VideoWriter(
        'appsrc ! videoconvert ! '
        'x264enc noise-reduction=10000 speed-preset=ultrafast tune=zerolatency ! '
        'rtph264pay config-interval=1 pt=96 !'
        'tcpserversink host=127.0.0.1 port=5000 sync=false', 0, framerate,
        (1920, 1080))

    counter = 0
    while cap.isOpened():
        frame = streamer.get_frame()
        pred = inference(frame, session, logits, inputs)
        result = parser.parse(pred, frame)

        # result = cv2.imencode('.jpg', result)[1].tobytes()

        out.write(result)

    cap.release()
    out.release()
Exemplo n.º 2
0
def gen(streamer):
    session, inputs, logits = construct_model(
        "../models/deeplab_v3_plus_53_19e_0095", (513, 513), 5)
    parser = Parser()

    while True:
        frame = streamer.get_frame()
        pred = inference(frame, session, logits, inputs)
        result = parser.parse(pred, frame)

        result = cv2.imencode('.jpg', result)[1].tobytes()

        yield (b'--frame\r\n'
               b'Content-Type: image/jpeg\r\n\r\n' + result + b'\r\n\r\n')
Exemplo n.º 3
0
                        dest='global_model',
                        action='store_true',
                        help='Train the model with Global Average Pooling')
    parser.add_argument('--glimpse-clouds',
                        dest='glimpse_clouds',
                        action='store_true',
                        help='Train the model with Glimpse Clouds')
    parser.add_argument(
        '--pose-predictions',
        dest='pose_predictions',
        action='store_true',
        help='Regress the pose from the penultimate features maps')

    # Args
    args, _ = parser.parse_known_args()

    # Transform to dict
    options = vars(args)

    options['global_model'] = True
    # options['glimpse_clouds'] = True
    # options['pose_predictions'] = True
    # mini-syn test
    # options['root'] = '/home/hochul/Desktop/mini_syn_data'
    # AIR+SYN
    options['root'] = '/media/hochul/my_book/data/'
    options['workers'] = 0 if platform == "darwin" else 12

    # Infer
    inference.inference(options)