Exemplo n.º 1
0
    def load_pretrained_model(self, model_path, model_name):
        # Load model and dictionaries
        print("Loading model params...")
        params = load_params('%s/%s' % (model_path, model_name))
        print("Loading dictionaries...")
        with open('%s/dict.pkl' % model_path, 'rb') as f:
            self.chardict = pkl.load(f)
        with open('%s/label_dict.pkl' % model_path, 'rb') as f:
            labeldict = pkl.load(f)

        self.n_char = len(self.chardict.keys()) + 1
        n_classes = len(labeldict.keys())
        print "#classes:", n_classes
        print labeldict

        print("Building network...")
        # Tweet variables
        tweet = T.itensor3()
        targets = T.imatrix()
        # masks
        t_mask = T.fmatrix()
        # network for prediction
        predictions = classify(tweet, t_mask, params, n_classes, self.n_char)
        # Theano function
        print("Compiling theano functions...")
        self.predict = theano.function([tweet, t_mask], predictions)
Exemplo n.º 2
0
def classify_app():
    # Write the POST method to post the result
    if request.method == 'POST':
        # Read article from textarea
        article = request.form.get('article')
        # Check if the article is not empty
        if article:
            # Get prediction of the article
            user_prediction = classify(article)
            # Convert the prediction from english to arabic
            if user_prediction[0] == 'Culture':
                user_prediction = 'تم تصنيف مقالتك على انها:  مـقالـة ثـقـافـيـة'
            elif user_prediction[0] == 'Finance':
                user_prediction = 'تم تصنيف مقالتك على انها : مـقالـة إقـتـصـاديـة'
            elif user_prediction[0] == 'Medical':
                user_prediction = 'تم تصنيف مقالتك على انها : مـقالـة صـحـيـة'
            elif user_prediction[0] == 'Politics':
                user_prediction = 'تم تصنيف مقالتك على انها : مـقالـة سـيـاسـيـة'
            elif user_prediction[0] == 'Sports':
                user_prediction = 'تم تصنيف مقالتك على انها : مـقالـة ريـاضـيـة'
            elif user_prediction[0] == 'Tech':
                user_prediction = 'تم تصنيف مقالتك على انها : مـقالـة تـقـنـيـة'
            else:
                user_prediction = 'لا يـمـكـن تـحـديـده'
            # Return the result
            return jsonify(result=user_prediction)
        # If the article is empty
        else:
            # Return the error message
            return jsonify(result='الرجاء إدخال نص الخبر ')
    # Render the index template
    return render_template('index.html')
Exemplo n.º 3
0
def input():
    if request.method == 'GET':
        return render_template('input.html')
    else:
        img_file = request.files['img_file']
        data_path = os.path.join(app.config['UPLOAD_FOLDER'],
                                 img_file.filename)
        img_file.save(data_path)

        result = inference.classify(data_path)

        return render_template('result.html',
                               result=result,
                               data_path=data_path)
Exemplo n.º 4
0
def lambda_handler(event, context):

    if not event:
        return respond(ValueError('Invalid request - missing body'))

    print(event)

    if not event['data']:
        return respond(ValueError('Invalid request - missing data'))

    data = str(event['data'])
    if len(data) != 2500:
        return respond(ValueError('Invalid request - invalid data'))

    for char in data:
        if char not in "0123456789abcdef":
            return respond(ValueError('Invalid request - invalid data'))


    UID = str(int(dt.timestamp(dt.now())*10000))

    payload = {
        'TableName': 'catch-images',
        'Item': {
            'uid' : {
                'S':UID
            },
            'device-id': {
                'S':event['devicehash']
            },
            'data': {
                'S':event['data']
            }
        }
    }

    # Attempt to classify drawing
    image = inference.unpack(event['data'])
    preds = inference.classify(image)


    dynamo.put_item(**payload)
    return respond(None, preds)
Exemplo n.º 5
0
def hello_world():
    # get page
    if request.method == 'GET':
        return render_template('index.html', value='hi')

    # send image
    if request.method == 'POST':
        print(request.files)
        if 'file' not in request.files:
            print('file not uploaded')
            return redirect(url_for('hello_world'))
        file = request.files['file']

        # Save, resize, and resave image
        file.save("static/photos/original.jpg")
        image = Image.open('static/photos/original.jpg')
        my_transforms = transforms.Compose([transforms.Resize(256)])
        image = my_transforms(image)
        image.save("static/photos/original.jpg")

        # Run image through classification function
        resultClass = classify(image)
        # Run image through Segmentation function
        resultSeg = segment(image)

        # Save Segmented image
        full_filename = os.path.join("/", app.config['UPLOAD_FOLDER'],
                                     'file.jpg')
        resultSeg.convert('RGB').save("static/photos/segmention.jpg")

        # Redirect to result page with required information
        return redirect(
            url_for('getResult',
                    resultClass=resultClass,
                    resultSeg='segmention.jpg',
                    original='original.jpg'))
def test():
    img_class, gpu, img_type, net, probe_type, model = parse_arguments(
        sys.argv[1:])

    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    probe_dir, gallery_dir = get_probe_gallery_dir(probe_type)

    y_ = tf.placeholder(tf.float32, [None, 2])
    y = classify(get_feature_map(img_type, net))
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y,1), \
     tf.argmax(y_,1)), tf.float32))

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        saver = tf.train.Saver()
        ckpt = get_ckpt_file(img_class, net, probe_type)
        if ckpt and ckpt.model_checkpoint_path:
            print(ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
        else:
            print("No checkpoint file found")
            return

        accs = []
        test_view_list = [
            "000", "018", "036", "054", "072", "090", "108", "126", "144",
            "162", "180"
        ]
        for view in test_view_list:
            test_x, test_y = load_data(img_class, "testing", view, probe_dir,
                                       gallery_dir)
            img0 = test_x[:, 0].reshape([-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
            img1 = test_x[:, 1].reshape([-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
            if img_type == "full":
                acc = sess.run(accuracy, feed_dict={probe_img:img0,\
                 gallery_img:img1, y_:test_y})
            elif img_type == "partial":
                parted_probe_img_list = segment_batch_img(img0)
                parted_gallery_img_list = segment_batch_img(img1)
                acc = sess.run(accuracy,
                               feed_dict={
                                   parted_probe_img[0]:
                                   parted_probe_img_list[0],
                                   parted_probe_img[1]:
                                   parted_probe_img_list[1],
                                   parted_probe_img[2]:
                                   parted_probe_img_list[2],
                                   parted_probe_img[3]:
                                   parted_probe_img_list[3],
                                   parted_probe_img[4]:
                                   parted_probe_img_list[4],
                                   parted_probe_img[5]:
                                   parted_probe_img_list[5],
                                   parted_gallery_img[0]:
                                   parted_gallery_img_list[0],
                                   parted_gallery_img[1]:
                                   parted_gallery_img_list[1],
                                   parted_gallery_img[2]:
                                   parted_gallery_img_list[2],
                                   parted_gallery_img[3]:
                                   parted_gallery_img_list[3],
                                   parted_gallery_img[4]:
                                   parted_gallery_img_list[4],
                                   parted_gallery_img[5]:
                                   parted_gallery_img_list[5],
                                   y_:
                                   test_y
                               })
            elif img_type == "combined":
                pass
            else:
                print("Error: Wrong net type")
                sys.exit(1)
            accs.append(acc)
            print('After %s training steps, probe view:' % global_step, view,\
              'accuracy = %g' % acc)

        average_acc = sum(accs) / len(accs)
        print('After %s training steps,' % global_step,
              'average accuracy = %g' % average_acc)

        x_axis = test_view_list
        y_axis = [100 * x for x in accs]
        plt.plot(x_axis, y_axis)
        plt.plot(x_axis, y_axis, 'ro')
        plt.xlabel('Probe view angle')
        plt.ylabel('Verification accuracy')
        if probe_type == 'NM':
            plt.title('Gallery: NM #1-4, view angles: 0-180 Probe: NM #5-6')
        elif probe_type == 'BG':
            plt.title('Gallery: NM #1-4, view angles: 0-180 Probe: BG #1-2')
        elif probe_type == 'CL':
            plt.title('Gallery: NM #1-4, view angles: 0-180 Probe: CL #1-2')
        else:
            print('Wrong probe type')

        plt.ylim(20, 100)
        plt.show()
def train():
    ### parse arguments
    img_class, gpu, img_type, net, probe_type, model = parse_arguments(
        sys.argv[1:])

    os.environ["CUDA_VISIBLE_DEVICES"] = '2'

    ### get probe and gallery dir
    probe_dir, gallery_dir = get_probe_gallery_dir(probe_type)

    ### angle train
    rfc_path = get_rfc_path(img_class, probe_type)
    if not os.path.exists(rfc_path):
        print("rfc model does not exist, need to train")
        rfc_model = RandomForestClassification()
        train_x, train_y = load_angle_train_data(img_class, view_list,
                                                 probe_dir)
        rfc = rfc_model.fit(x_train=train_x, y_train=train_y)
        joblib.dump(rfc, rfc_path)

    ### cnn train
    y_ = tf.placeholder(tf.float32, [None, 2])
    y = classify(get_feature_map(img_type, net))

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(\
     logits = y, labels = y_))
    total_loss = cross_entropy + tf.add_n(tf.get_collection('losses'))
    accuracy = tf.reduce_mean(
        tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)), tf.float32))
    train_step = tf.train.AdamOptimizer(0.0001).minimize(total_loss)

    #gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.45)
    gpu_options = tf.GPUOptions(allow_growth=True)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        saver = tf.train.Saver()
        paired_train_data = prepare_training_data(probe_dir, gallery_dir)
        NUM_BATCH = len(paired_train_data) // BATCH_SIZE
        sess.run(tf.global_variables_initializer())

        x_axis = []
        y_axis = []
        y1_axis = []

        start_step = 0
        ckpt = get_ckpt_file(img_class, net, probe_type)
        if ckpt and ckpt.model_checkpoint_path:
            print(ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)
            start_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]

        n = 0
        while (True):
            for i in range(NUM_BATCH):
                batch_x, batch_y = get_next_batch(img_class, probe_type,
                                                  paired_train_data,
                                                  BATCH_SIZE)
                batch_x0 = batch_x[:, 0, :, :].reshape(
                    [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
                batch_x1 = batch_x[:, 1, :, :].reshape(
                    [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
                if img_type == "full":
                    _, loss = sess.run([train_step, total_loss],
                                       feed_dict={
                                           probe_img: batch_x0,
                                           gallery_img: batch_x1,
                                           y_: batch_y
                                       })
                elif img_type == "partial":
                    parted_probe_img_list = segment_batch_img(batch_x0)
                    parted_gallery_img_list = segment_batch_img(batch_x1)
                    _, loss = sess.run(
                        [train_step, total_loss],
                        feed_dict={
                            y_: batch_y,
                            parted_probe_img[0]: parted_probe_img_list[0],
                            parted_probe_img[1]: parted_probe_img_list[1],
                            parted_probe_img[2]: parted_probe_img_list[2],
                            parted_probe_img[3]: parted_probe_img_list[3],
                            parted_probe_img[4]: parted_probe_img_list[4],
                            parted_probe_img[5]: parted_probe_img_list[5],
                            parted_gallery_img[0]: parted_gallery_img_list[0],
                            parted_gallery_img[1]: parted_gallery_img_list[1],
                            parted_gallery_img[2]: parted_gallery_img_list[2],
                            parted_gallery_img[3]: parted_gallery_img_list[3],
                            parted_gallery_img[4]: parted_gallery_img_list[4],
                            parted_gallery_img[5]: parted_gallery_img_list[5]
                        })
                elif img_type == "combined":
                    pass
                else:
                    print("Error: Wrong net type")
                    sys.exit(1)

                global_step = int(start_step) + n * NUM_BATCH + i
                if (global_step % 10) == 0:
                    print(global_step, " loss: ", loss)
                if (global_step % 100) == 0:
                    accs = []
                    for view in view_list:
                        val_x, val_y = load_data(img_class, "validation", view,
                                                 probe_dir, gallery_dir)
                        img0 = val_x[:, 0].reshape(
                            [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
                        img1 = val_x[:, 1].reshape(
                            [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
                        if img_type == "partial":
                            parted_img0 = segment_batch_img(img0)
                            parted_img1 = segment_batch_img(img1)
                            acc = accuracy.eval({
                                parted_probe_img[0]:
                                parted_img0[0],
                                parted_probe_img[1]:
                                parted_img0[1],
                                parted_probe_img[2]:
                                parted_img0[2],
                                parted_probe_img[3]:
                                parted_img0[3],
                                parted_probe_img[4]:
                                parted_img0[4],
                                parted_probe_img[5]:
                                parted_img0[5],
                                parted_gallery_img[0]:
                                parted_img1[0],
                                parted_gallery_img[1]:
                                parted_img1[1],
                                parted_gallery_img[2]:
                                parted_img1[2],
                                parted_gallery_img[3]:
                                parted_img1[3],
                                parted_gallery_img[4]:
                                parted_img1[4],
                                parted_gallery_img[5]:
                                parted_img1[5],
                                y_:
                                val_y
                            })
                        elif img_type == "full":
                            acc = accuracy.eval({
                                probe_img: img0,
                                gallery_img: img1,
                                y_: val_y
                            })
                        elif img_type == "combined":
                            pass
                        else:
                            print("Error: Wrong net type")
                            sys.exit(1)
                        accs.append(acc)
                    avg_acc = sum(accs) / len(accs)
                    x_axis.append(global_step)
                    y_axis.append(avg_acc)
                    y1_axis.append(loss)
                    print(global_step, " accuracy: ", avg_acc)
                    #if acc > 0.995 and n > 2:
                    #	saver.save(sess, './chpts/cnn_MT.model', \
                    #		global_step=n*NUM_BATCH+i)
                    #	plt.plot(x_axis, y_axis)
                    #	plt.show()
                    #	sys.exit(0)
                if global_step != 0 and (global_step % 1000) == 0:
                    saver.save(sess, get_ckpt_filename_to_save(img_class, net, probe_type),\
                     global_step=int(start_step)+n*NUM_BATCH+i)
                if global_step >= (int(start_step) + 25000):
                    plt.figure(1)
                    ax1 = plt.subplot(111)
                    ax2 = plt.subplot(112)
                    plt.sca(ax1)
                    plt.plot(x_axis, y_axis, 'r', linewidth=2)
                    plt.sca(ax2)
                    plt.plot(x_axis, y1_axis, 'g', linewidth=2)
                    plt.show()
                    sys.exit(0)
            n += 1