Exemplo n.º 1
0
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    criterion = SorensenDiceLoss()
    loss_train = LossWrapper(criterion=criterion,
                             transforms=Compose(ApplyAndRemoveMask(),
                                                InvertTarget()))
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              ApplyAndRemoveMask(),
                                              InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    offsets = data_config['volume_config']['segmentation']['affinity_config'][
        'offsets']
    metric = ArandErrorFromMulticut(average_slices=False,
                                    use_2d_ws=True,
                                    n_threads=8,
                                    weight_edges=True,
                                    offsets=offsets)

    trainer = Trainer(model)\
        .save_every((1000, 'iterations'),
                    to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))\
        .register_callback(GarbageCollection())

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'),
        log_histograms_every='never').observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Exemplo n.º 2
0
def dice_loss():
    trafos = [
        SemanticTargetTrafo(class_ids=[1, 2, 3],
                            dtype=torch.float32,
                            ignore_label=-1),
        ApplyAndRemoveMask()
    ]
    trafos = Compose(*trafos)
    return LossWrapper(criterion=SorensenDiceLoss(), transforms=trafos)
Exemplo n.º 3
0
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    affinity_offsets = data_config['volume_config']['segmentation'][
        'affinity_offsets']
    loss = MultiOutputLossWrapper(
        criterion=SorensenDiceLoss(),
        transforms=Compose(MaskTransitionToIgnoreLabel(affinity_offsets),
                           RemoveSegmentationFromTarget(), InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    # use multicut pipeline for validation
    # metric = ArandErrorFromSegmentationPipeline(local_affinity_multicut_from_wsdt2d(n_threads=10,
    #                                                                                 time_limit=120))

    # use damws for validation
    stride = [2, 10, 10]
    metric = ArandErrorFromSegmentationPipeline(
        DamWatershed(affinity_offsets, stride, randomize_bounds=False))
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))

    # FIXME some issues with conda tf for torch0.3 env
    # logger.info("Building logger.")
    # # Build logger
    # tensorboard = TensorboardLogger(log_scalars_every=(1, 'iteration'),
    #                                 log_images_every=(100, 'iterations')).observe_states(
    #     ['validation_input', 'validation_prediction, validation_target'],
    #     observe_while='validating'
    # )

    # trainer.build_logger(tensorboard, log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Exemplo n.º 4
0
def set_up_training(project_directory, config, data_config):

    # Get model
    model_name = config.get('model_name')
    model = getattr(models, model_name)(**config.get('model_kwargs'))

    criterion = SorensenDiceLoss()
    loss_train = LossWrapper(criterion=criterion, transforms=InvertTarget())
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              InvertTarget()))

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.75

    offsets = data_config['volume_config']['segmentation']['affinity_config'][
        'offsets']
    strides = [1, 10, 10]
    metric = ArandErrorFromMWS(average_slices=False,
                               offsets=offsets,
                               strides=strides,
                               randomize_strides=False)

    trainer = Trainer(model)\
        .save_every((1000, 'iterations'),
                    to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness,
                                                     verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.99,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))\

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'),
        log_histograms_every='never').observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Exemplo n.º 5
0
def dice_loss(is_val=False):
    print("Build Dice loss")
    if is_val:
        trafos = [
            RemoveSegmentationFromTarget(),
            ApplyAndRemoveMask(),
            InvertTarget()
        ]
    else:
        trafos = [ApplyAndRemoveMask(), InvertTarget()]
    trafos = Compose(*trafos)
    return LossWrapper(criterion=SorensenDiceLoss(), transforms=trafos)
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model, max_iters):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    loss = LossWrapper(criterion=SorensenDiceLoss(),
                       transforms=Compose(MaskIgnoreLabel(),
                                          RemoveSegmentationFromTarget()))
    # TODO loss transforms:
    # - Invert Target ???

    # Build trainer and validation metric
    logger.info("Building trainer.")
    # smoothness = 0.95

    # TODO set up validation ?!
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .register_callback(ManualLR(decay_specs=[((k * 100, 'iterations'), 0.99)
                                                 for k in range(1, max_iters // 100)]))
    # .validate_every((100, 'iterations'), for_num_iterations=1)\
    # .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
    # .build_metric(metric)\
    # .register_callback(AutoLR(factor=0.98,
    #                           patience='100 iterations',
    #                           monitor_while='validating',
    #                           monitor_momentum=smoothness,
    #                           consider_improvement_with_respect_to='previous'))

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations'))  # .observe_states(
    #     ['validation_input', 'validation_prediction, validation_target'],
    #     observe_while='validating'
    # )

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Exemplo n.º 7
0
    def _test_maxpool_loss_retain_segmentation(self):
        from neurofire.criteria.loss_wrapper import LossWrapper
        from neurofire.criteria.multi_scale_loss import MultiScaleLossMaxPool
        from neurofire.transform.segmentation import Segmentation2AffinitiesFromOffsets
        from neurofire.criteria.loss_transforms import MaskTransitionToIgnoreLabel
        from neurofire.criteria.loss_transforms import RemoveSegmentationFromTarget

        offsets = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 0, 0), (0, 9, 0),
                   (0, 0, 9)]

        shape = (128, 128, 128)
        aff_trafo = Segmentation2AffinitiesFromOffsets(
            3,
            offsets,
            retain_segmentation=True,
            add_singleton_channel_dimension=True)
        seg = self.make_segmentation_with_ignore(shape)

        target = Variable(torch.Tensor(aff_trafo(seg.astype('float32'))[None]),
                          requires_grad=False)

        tshape = target.size()
        # make all scale predictions
        predictions = []
        for scale in range(4):
            pshape = (tshape[0], tshape[1] - 1) + shape
            predictions.append(
                Variable(torch.Tensor(*pshape).uniform_(0, 1),
                         requires_grad=True))
            shape = tuple(sh // 2 for sh in shape)

        trafos = Compose(MaskTransitionToIgnoreLabel(offsets, ignore_label=0),
                         RemoveSegmentationFromTarget())
        criterion = LossWrapper(SorensenDiceLoss(), trafos)
        ms_loss = MultiScaleLossMaxPool(criterion, 2, retain_segmentation=True)
        loss = ms_loss.forward(predictions, target)
        loss.backward()

        for prediction in predictions:
            grads = prediction.grad.data
            # check for the correct gradient size
            self.assertEqual(grads.size(), prediction.size())
            # check that gradients are not trivial
            self.assertNotEqual(grads.sum(), 0)
def set_up_training(project_directory,
                    config,
                    data_config,
                    n_iters):
    model_name = config.get('model_name')
    model = getattr(models, model_name)(**config.get('model_kwargs'))

    loss = SorensenDiceLoss()
    # Build trainer and validation metric
    logger.info("Building trainer.")
    log_file = os.path.join(project_directory, 'tmp_log.txt')

    trainer = Trainer(model)\
        .save_every((n_iters, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .register_callback(TimeTrainingIters(log_file))
    return trainer
Exemplo n.º 9
0
    def __init__(self,
                 n_channels,
                 n_directions,
                 weights=[1., 1.],
                 log=True,
                 exclude_borders=[0, 0, 0],
                 max_dist=100):
        """

        :param n_channels:
        :param n_directions:
        :param weights: First gives weight for Sorensen Dice loss, second gives L1-Loss
        :param log:
        """
        super().__init__()
        self.n_channels = n_channels
        self.n_directions = n_directions
        self.l1 = nn.L1Loss()
        self.sd = SorensenDiceLoss()
        self.weights = weights
        self.log = log
        self.exclude_borders = exclude_borders
        self.max_dist = max_dist
        self.log_counter = 0
Exemplo n.º 10
0
    def test_maxpool_loss(self):
        from neurofire.criteria.loss_wrapper import LossWrapper
        from neurofire.criteria.multi_scale_loss import MultiScaleLossMaxPool
        from neurofire.transform.segmentation import Segmentation2Affinities

        offsets = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 0, 0), (0, 9, 0),
                   (0, 0, 9)]

        shape = (128, 128, 128)
        aff_trafo = Segmentation2Affinities(offsets, retain_segmentation=False)
        seg = self.make_segmentation_with_ignore(shape)

        target = Variable(torch.Tensor(aff_trafo(seg.astype('float32'))[None]),
                          requires_grad=False)

        tshape = target.size()
        # make all scale predictions
        predictions = []
        for scale in range(4):
            pshape = tuple(tshape[:2], ) + shape
            predictions.append(
                Variable(torch.Tensor(*pshape).uniform_(0, 1),
                         requires_grad=True))
            shape = tuple(sh // 2 for sh in shape)

        criterion = LossWrapper(SorensenDiceLoss())
        ms_loss = MultiScaleLossMaxPool(criterion, 2)
        loss = ms_loss.forward(predictions, target)
        loss.backward()

        for prediction in predictions:
            grads = prediction.grad.data
            # check for the correct gradient size
            self.assertEqual(grads.size(), prediction.size())
            # check that gradients are not trivial
            self.assertNotEqual(grads.sum(), 0)
Exemplo n.º 11
0
 def __init__(self, alpha=1., beta=1.):
     super().__init__()
     self.alpha = alpha
     self.beta = beta
     self.bce = nn.BCELoss()
     self.dice = SorensenDiceLoss()
def set_up_training(project_directory, config, data_config,
                    load_pretrained_model):
    # Get model
    if load_pretrained_model:
        model = Trainer().load(from_directory=project_directory,
                               filename='Weights/checkpoint.pytorch').model
    else:
        model_name = config.get('model_name')
        model = getattr(models, model_name)(**config.get('model_kwargs'))

    affinity_offsets = data_config['volume_config']['segmentation'][
        'affinity_offsets']

    # NOTE invert target is done in the multiscale loss
    loss = LossWrapper(criterion=SorensenDiceLoss(),
                       transforms=Compose(
                           MaskTransitionToIgnoreLabel(affinity_offsets),
                           RemoveSegmentationFromTarget()))

    scaling_factors = 3 * [(1, 3, 3)]
    multiscale_loss = MultiScaleLossMaxPool(loss,
                                            scaling_factors,
                                            invert_target=True,
                                            retain_segmentation=True)

    # Build trainer and validation metric
    logger.info("Building trainer.")
    smoothness = 0.95

    # use multicut pipeline for validation
    # TODO fix nifty weighting schemes
    metric = ArandErrorFromSegmentationPipeline(
        local_affinity_multicut_from_wsdt2d(n_threads=10,
                                            weighting_scheme=None,
                                            time_limit=120),
        is_multiscale=True)
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(multiscale_loss)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))

    logger.info("Building logger.")
    # Build logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations')).observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer
Exemplo n.º 13
0
 def __init__(self):
     super().__init__()
     self.criterion = SorensenDiceLoss()
Exemplo n.º 14
0
def set_up_training(project_directory, config):

    # Load the model to train from the configuratuib file ('./config/train_config.yml')
    model_name = config.get('model_name')
    model = getattr(models, model_name)(**config.get('model_kwargs'))

    # Initialize the loss: we use the SorensenDiceLoss, which has the nice property
    # of being fairly robust for un-balanced targets
    criterion = SorensenDiceLoss()
    # Wrap the loss to apply additional transformations before the actual
    # loss is applied. Here, we apply the mask to the target
    # and invert the target (necessary for sorensen dice) during training.
    # In addition, we need to remove the segmentation from the target
    # during validation (we only keep the segmentation in the target during validation)
    loss_train = LossWrapper(criterion=criterion,
                             transforms=Compose(ApplyAndRemoveMask(),
                                                InvertTarget()))
    loss_val = LossWrapper(criterion=criterion,
                           transforms=Compose(RemoveSegmentationFromTarget(),
                                              ApplyAndRemoveMask(),
                                              InvertTarget()))

    # Build the validation metric: we validate by running connected components on
    # the affinities for several thresholds
    # metric = ArandErrorFromConnectedComponentsOnAffinities(thresholds=[.5, .6, .7, .8, .9],
    #                                                        invert_affinities=True)
    metric = ArandErrorFromConnectedComponents(thresholds=[.5, .6, .7, .8, .9],
                                               invert_input=True,
                                               average_input=True)

    logger.info("Building trainer.")
    smoothness = 0.95
    # Build the trainer object
    trainer = Trainer(model)\
        .save_every((1000, 'iterations'), to_directory=os.path.join(project_directory, 'Weights'))\
        .build_criterion(loss_train)\
        .build_validation_criterion(loss_val)\
        .build_optimizer(**config.get('training_optimizer_kwargs'))\
        .evaluate_metric_every('never')\
        .validate_every((100, 'iterations'), for_num_iterations=1)\
        .register_callback(SaveAtBestValidationScore(smoothness=smoothness, verbose=True))\
        .build_metric(metric)\
        .register_callback(AutoLR(factor=0.98,
                                  patience='100 iterations',
                                  monitor_while='validating',
                                  monitor_momentum=smoothness,
                                  consider_improvement_with_respect_to='previous'))
    # .register_callback(DumpHDF5Every(frequency='99 iterations',
    #                                  to_directory=os.path.join(project_directory, 'debug')))

    logger.info("Building logger.")
    # Build tensorboard logger
    tensorboard = TensorboardLogger(
        log_scalars_every=(1, 'iteration'),
        log_images_every=(100, 'iterations')).observe_states(
            ['validation_input', 'validation_prediction, validation_target'],
            observe_while='validating')

    trainer.build_logger(tensorboard,
                         log_directory=os.path.join(project_directory, 'Logs'))
    return trainer