Exemplo n.º 1
0
def main():
    # 入力データのshape定義
    x = nn.variable.Variable(
        [BATCH_SIZE, IMAGE_DEPTH * IMAGE_WIDTH * IMAGE_HEIGHT])
    # ラベルのshape定義
    t = nn.variable.Variable([BATCH_SIZE, LABEL_NUM])

    pred = convolution(x)
    loss_ = loss(pred, t)

    solver = S.Adam()
    solver.set_parameters(nn.get_parameters())

    data = InputData()

    for i in range(NUM_STEP):
        # 100STEP毎にテスト実施
        if i % 100 == 0:
            l = 0
            a = 0
            for k, (t.d, x.d) in enumerate(data.test_data()):
                loss_.forward()
                l += loss_.d
                a += accuracy(pred, t)
            print("Step: %05d Test loss: %0.05f Test accuracy: %0.05f" %
                  (i, l / k, a / k))
        t.d, x.d = data.next_batch()
        loss_.forward()
        solver.zero_grad()
        loss_.backward()
        solver.weight_decay(DECAY_RATE)
        solver.update()
        if i % 10 == 0:
            print("Step: %05d Train loss: %0.05f Train accuracy: %0.05f" %
                  (i, loss_.d, accuracy(pred, t)))
Exemplo n.º 2
0
def train():
    '''訓練を実施する関数
  '''
    with tf.Graph().as_default():
        print('Loading data...')
        data = InputData(train_data_path=FLAGS.train_data,
                         validation_data_path=FLAGS.validation_data,
                         batch_size=FLAGS.batch_size)
        input_ph = tf.placeholder(tf.int32, [None, data.max_len])
        training_ph = tf.placeholder(tf.bool, [])
        label_ph = tf.placeholder(tf.float32, [None, data.num_category])
        # summary用のplace holder
        summary_ph = tf.placeholder(tf.float32, [3])
        config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))

        with tf.Session(config=config) as sess:
            convolution_op = convolution(input_ph, training_ph, data.num_chars,
                                         data.num_category)
            loss_op = loss(convolution_op, label_ph)
            train_op = minimize(loss_op)
            accuracy_op = accuracy(convolution_op, label_ph)
            top_3_accuracy_op = top_3_accuracy(convolution_op, label_ph)
            summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)
            write_validation_summary_op = write_validation_summary(summary_ph)

            for vals in tf.trainable_variables():
                tf.summary.histogram(vals.name, vals)

            summary_op = tf.summary.merge_all()
            saver = tf.train.Saver()
            load_checkpoint(sess, saver)
            for i in range(FLAGS.max_step):

                label_, text_ = data.next_batch()
                _ = sess.run(train_op,
                             feed_dict={
                                 input_ph: text_,
                                 label_ph: label_,
                                 training_ph: True
                             })
                if i % 100 == 0:
                    loss_, accuracy_, top_3_accuracy_ = sess.run(
                        [loss_op, accuracy_op, top_3_accuracy_op],
                        feed_dict={
                            input_ph: text_,
                            label_ph: label_,
                            training_ph: False
                        })
                    print(
                        'global step: %04d, train loss: %01.7f, train accuracy_top_1 %01.5f train accuracy_top_3 %01.5f'
                        % (i, loss_, accuracy_, top_3_accuracy_))

                if i % 1000 == 0:
                    validation_loss = []
                    validation_top_3_accuracy = []
                    validation_top_1_accuracy = []
                    for validation_label, validation_text in data.next_batch_evaluation_data(
                    ):
                        loss_, top_3_accuracy_, accuracy_ = sess.run(
                            [loss_op, top_3_accuracy_op, accuracy_op],
                            feed_dict={
                                input_ph: validation_text,
                                label_ph: validation_label,
                                training_ph: False
                            })
                        validation_loss.append(loss_)
                        validation_top_1_accuracy.append(accuracy_)
                        validation_top_3_accuracy.append(top_3_accuracy_)
                    loss_ = sum(validation_loss) / len(validation_loss)
                    accuracy_ = sum(validation_top_1_accuracy) / len(
                        validation_top_1_accuracy)
                    top_3_accuracy_ = sum(validation_top_3_accuracy) / len(
                        validation_top_3_accuracy)
                    print(
                        'Validation loss: %s validation accuracy_top_1: %01.5f validation accuracy_top_3: %01.5f'
                        % (loss_, accuracy_, top_3_accuracy_))
                    saver.save(sess, FLAGS.checkpoint_dir, global_step=i)
                    # サマリー出力
                    _, summary_str = sess.run(
                        [write_validation_summary_op, summary_op],
                        feed_dict={
                            input_ph: text_,
                            label_ph: label_,
                            training_ph: False,
                            summary_ph: [loss_, accuracy_, top_3_accuracy_]
                        })
                    summary_writer.add_summary(summary_str, i)
                    ru = resource.getrusage(resource.RUSAGE_SELF)
                    print('Max memory usage(byte): ' + str(ru.ru_maxrss))