def test_evaluate_pdf():
    """Testing the evaluation of the pdf."""

    # suppose that workers are uniform on [a, b] = [0, 1]
    a, b = sym.var('a, b')
    uniform_cdf = (valid_var - a) / (b - a)
    params = {'a': 0.0, 'b': 1.0}
    workers = inputs.Input(var=valid_var,
                           cdf=uniform_cdf,
                           bounds=[0.25, 0.75],
                           params=params)

    # evaluate with scalar input and norm=False
    actual_pdf = workers.evaluate_pdf(0.5, norm=False)
    expected_pdf = 1.0
    nose.tools.assert_almost_equals(actual_pdf, expected_pdf)

    # evaluate with array input and norm=False
    actual_pdf = workers.evaluate_pdf(np.array([0.25, 0.5, 0.75]), norm=False)
    expected_pdf = np.ones(3)
    np.testing.assert_almost_equal(actual_pdf, expected_pdf)

    # evaluate with scalar input and norm=True
    actual_pdf = workers.evaluate_pdf(0.5, norm=True)
    expected_pdf = 2.0
    nose.tools.assert_almost_equals(actual_pdf, expected_pdf)

    # evaluate with array input and norm=False
    actual_pdf = workers.evaluate_pdf(np.array([0.25, 0.5, 0.75]), norm=True)
    expected_pdf = np.repeat(2.0, 2)
    np.testing.assert_almost_equal(actual_pdf, expected_pdf)
Exemplo n.º 2
0
    def setUp(self):
        """Set up code for test fixtures."""
        # define some workers skill
        x, a, b = sym.var('x, a, b')
        skill_cdf = (x - a) / (b - a)
        skill_params = {'a': 1.0, 'b': 2.0}
        skill_bounds = [skill_params['a'], skill_params['b']]

        workers = inputs.Input(var=x,
                               cdf=skill_cdf,
                               params=skill_params,
                               bounds=skill_bounds,
                               )

        # define some firms
        y = sym.var('y')
        productivity_cdf = (y - a) / (b - a)
        productivity_params = skill_params
        productivity_bounds = skill_bounds

        firms = inputs.Input(var=y,
                             cdf=productivity_cdf,
                             params=productivity_params,
                             bounds=productivity_bounds,
                             )

        # define symbolic expression for CES between x and y
        x, y, omega_A, sigma_A = sym.var('x, y, omega_A, sigma_A')
        A = ((omega_A * x**((sigma_A - 1) / sigma_A) +
             (1 - omega_A) * y**((sigma_A - 1) / sigma_A))**(sigma_A / (sigma_A - 1)))

        # define symbolic expression for Cobb-Douglas between l and r
        l, r, omega_B, sigma_B = sym.var('l, r, omega_A, sigma_A')
        B = l**omega_B * r**(1 - omega_B)

        # multiplicative separability!
        F_params = {'omega_A': 0.5, 'omega_B': 0.5, 'sigma_A': 0.5, 'sigma_B': 1.0}
        F = A * B

        self.model = models.Model(assortativity='positive',
                                  workers=workers,
                                  firms=firms,
                                  production=F,
                                  params=F_params)

        self.solver = shooting.ShootingSolver(model=self.model)
def test_validate_var():
    """Testing validation of var attribute."""

    # valid var must be a sym.Symbol
    invalid_var = 'x'

    with nose.tools.assert_raises(AttributeError):
        inputs.Input(var=invalid_var,
                     cdf=valid_cdf,
                     bounds=valid_bounds,
                     params=valid_params)
def test_validate_params():
    """Testing validation of bounds parameter."""

    # valid parameters must be a dict
    invalid_params = (1.0, 2.0)

    with nose.tools.assert_raises(AttributeError):
        inputs.Input(var=valid_var,
                     cdf=valid_cdf,
                     bounds=valid_bounds,
                     params=invalid_params)
def test_validate_cdf():
    """Testing validation of cdf attribute."""
    def invalid_cdf(x, mu, sigma):
        """Valid cdf must return a SymPy expression."""
        return stats.lognorm.cdf(x, sigma, scale=np.exp(mu))

    with nose.tools.assert_raises(AttributeError):
        inputs.Input(var=valid_var,
                     cdf=invalid_cdf,
                     bounds=valid_bounds,
                     params=valid_params)
def test_validate_upper():
    """Testing validation of upper attribute."""

    # upper should be a float
    invalid_upper = 14

    with nose.tools.assert_raises(AttributeError):
        workers = inputs.Input(var=valid_var,
                               cdf=valid_cdf,
                               bounds=valid_bounds,
                               params=valid_params)
        workers.upper = invalid_upper
def test_evaluate_cdf():
    """Testing the evaluation of the cdf."""

    # suppose that workers are uniform on [a, b] = [0, 1]
    a, b = sym.var('a, b')
    uniform_cdf = (valid_var - a) / (b - a)
    params = {'a': 0.0, 'b': 1.0}
    workers = inputs.Input(var=valid_var,
                           cdf=uniform_cdf,
                           bounds=[0.0, 1.0],
                           params=params)

    # evaluate with scalar input
    actual_cdf = workers.evaluate_cdf(0.5)
    expected_cdf = 0.5
    nose.tools.assert_almost_equals(actual_cdf, expected_cdf)

    # evaluate with array input
    actual_cdf = workers.evaluate_cdf(np.array([0.0, 0.5, 1.0]))
    expected_cdf = actual_cdf
    np.testing.assert_almost_equal(actual_cdf, expected_cdf)
import inputs
import models

# define endogenous variables
mu, theta = sym.var('mu, theta')

# define some workers skill
x, mu1, sigma1 = sym.var('x, mu1, sigma1')
skill_cdf = 0.5 + 0.5 * sym.erf((sym.log(x) - mu1) / sym.sqrt(2 * sigma1**2))
skill_params = {'mu1': 0.0, 'sigma1': 1.0}
skill_bounds = [1e-3, 5e1]

workers = inputs.Input(
    var=x,
    cdf=skill_cdf,
    params=skill_params,
    bounds=skill_bounds,
)

# define some firms
y, mu2, sigma2 = sym.var('y, mu2, sigma2')
productivity_cdf = 0.5 + 0.5 * sym.erf(
    (sym.log(y) - mu2) / sym.sqrt(2 * sigma2**2))
productivity_params = {'mu2': 0.0, 'sigma2': 1.0}
productivity_bounds = [1e-3, 5e1]

firms = inputs.Input(
    var=y,
    cdf=productivity_cdf,
    params=productivity_params,
    bounds=productivity_bounds,