Exemplo n.º 1
0
class FaceRecognition:
    def __init__(self) -> None:
        self.app = FaceAnalysis()
        # ctx id, <0 means using cpu
        self.app.prepare(ctx_id=0, det_size=(640, 640))

    def get_embeddings(self, image_file):
        """
        Generates face embedding of the image_file given
        """
        # img = ins_get_image('myPic')
        img = cv2.imread(image_file)
        faces = self.app.get(img)
        rimg = self.app.draw_on(img, faces)
        cv2.imwrite("./output.jpg", rimg)
        # print(faces)
        # print(type(faces))
        print(f"BBOX{faces[0]['bbox']}")
        # print(f"kps{faces[0]['kps']}")
        # # print(f"Landmark_3d{faces[0]['landmark_3d_68']}")
        # # print(f"Landmark_2d{faces[0]['landmark_2d_106']}")
        # print(f"Gender{faces[0]['gender']}")
        # print(f"Age{faces[0]['age']}")
        print(f"embedding{faces[0]['embedding']}")
        return faces
Exemplo n.º 2
0
class InsightFace(FaceScanner):
    ID = 'InsightFace'
    DETECTION_MODEL_NAME = 'retinaface_r50_v1'
    CALCULATION_MODEL_NAME = 'arcface_r100_v1'
    IMG_LENGTH_LIMIT = ENV.IMG_LENGTH_LIMIT

    def __init__(self):
        super().__init__()
        self._detection_model = FaceAnalysis(
            det_name=self.DETECTION_MODEL_NAME, rec_name=None, ga_name=None)
        self._calculation_model = model_zoo.get_model(
            self.CALCULATION_MODEL_NAME)
        self._CTX_ID_CPU = -1
        self._NMS = 0.4
        self._detection_model.prepare(ctx_id=self._CTX_ID_CPU, nms=self._NMS)
        self._calculation_model.prepare(ctx_id=self._CTX_ID_CPU)
        self.det_prob_threshold = 0.8

    def scan(self,
             img: Array3D,
             det_prob_threshold: float = None) -> List[ScannedFace]:
        scanned_faces = []
        for bounding_box in self.find_faces(img, det_prob_threshold):
            norm_cropped_img = face_align.norm_crop(
                img, landmark=bounding_box.landmark)
            embedding = self._calculation_model.get_embedding(
                norm_cropped_img).flatten()
            scanned_faces.append(
                ScannedFace(box=bounding_box, embedding=embedding, img=img))
        return scanned_faces

    def find_faces(
            self,
            img: Array3D,
            det_prob_threshold: float = None) -> List[InsightFaceBoundingBox]:
        if det_prob_threshold is None:
            det_prob_threshold = self.det_prob_threshold
        assert 0 <= det_prob_threshold <= 1
        scaler = ImgScaler(self.IMG_LENGTH_LIMIT)
        img = scaler.downscale_img(img)
        results = self._detection_model.get(img, det_thresh=det_prob_threshold)
        boxes = []
        for result in results:
            downscaled_box_array = result.bbox.astype(np.int).flatten()
            downscaled_box = InsightFaceBoundingBox(
                x_min=downscaled_box_array[0],
                y_min=downscaled_box_array[1],
                x_max=downscaled_box_array[2],
                y_max=downscaled_box_array[3],
                probability=result.det_score,
                landmark=result.landmark)
            box = downscaled_box.scaled(scaler.upscale_coefficient)
            if box.probability <= det_prob_threshold:
                logger.debug(
                    f'Box Filtered out because below threshold ({det_prob_threshold}: {box})'
                )
                continue
            logger.debug(f"Found: {box.dto}")
            boxes.append(box)
        return boxes
Exemplo n.º 3
0
 def __init__(self):
     super().__init__()
     self._detection_model = FaceAnalysis(
         det_name=self.DETECTION_MODEL_NAME, rec_name=None, ga_name=None)
     self._calculation_model = model_zoo.get_model(
         self.CALCULATION_MODEL_NAME)
     self._CTX_ID_CPU = -1
     self._NMS = 0.4
     self._detection_model.prepare(ctx_id=self._CTX_ID_CPU, nms=self._NMS)
     self._calculation_model.prepare(ctx_id=self._CTX_ID_CPU)
     self.det_prob_threshold = 0.8
Exemplo n.º 4
0
    def __init__(self, options):
        '''
        Constructor
        '''
        #import insightface
        from insightface.app import FaceAnalysis

        os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
        # kwargs = {'root':os.path.join(options.storage_dir,'models')}
        #load Retina face model

        if options.gpuid == -1:
            ctx_id = -1
        else:
            ctx_id = int(options.gpuid)

        #self.app = FaceAnalysis(allowed_modules=['detection','recognition'])
        self.app = FaceAnalysis()
        self.app.prepare(ctx_id=0, det_size=(640, 640))

        print("InsightFaces Models Loaded.")
Exemplo n.º 5
0
import cv2
import numpy as np
import os
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

if __name__ == '__main__':
    app = FaceAnalysis(allowed_modules=['detection', 'landmark_2d_106'])
    app.prepare(ctx_id=0, det_size=(640, 640))
    img = ins_get_image('t1')
    faces = app.get(img)
    #assert len(faces)==6
    tim = img.copy()
    color = (200, 160, 75)
    for face in faces:
        lmk = face.landmark_2d_106
        lmk = np.round(lmk).astype(np.int)
        for i in range(lmk.shape[0]):
            p = tuple(lmk[i])
            cv2.circle(tim, p, 1, color, 1, cv2.LINE_AA)
    cv2.imwrite('./test_out.jpg', tim)

Exemplo n.º 6
0
# pip install onnxruntime

import argparse
import cv2
import sys
import numpy as np
import insightface
from insightface.app import FaceAnalysis

assert insightface.__version__>='0.2'

parser = argparse.ArgumentParser(description='insightface test')
# general
parser.add_argument('--ctx', default=0, type=int, help='ctx id, <0 means using cpu')
args = parser.parse_args()

app = FaceAnalysis(name='antelope')
app.prepare(ctx_id=args.ctx, det_size=(640,640))

img = cv2.imread('katya1.jpg')
faces = app.get(img)
assert len(faces)==1 #6
rimg = app.draw_on(img, faces)
cv2.imwrite("./katya1_out.jpg", rimg)
print(len(faces))
for face in faces:
    print(face.bbox)
    print(face.kps)
    print(face.embedding.shape)

Exemplo n.º 7
0
 def __init__(self) -> None:
     self.app = FaceAnalysis()
     # ctx id, <0 means using cpu
     self.app.prepare(ctx_id=0, det_size=(640, 640))
Exemplo n.º 8
0
import argparse
import cv2
import sys
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image


parser = argparse.ArgumentParser(description='insightface gender-age test')
# general
parser.add_argument('--ctx', default=0, type=int, help='ctx id, <0 means using cpu')
args = parser.parse_args()

app = FaceAnalysis(allowed_modules=['detection', 'genderage'])
app.prepare(ctx_id=args.ctx, det_size=(640,640))

img = ins_get_image('t1')
faces = app.get(img)
assert len(faces)==6
for face in faces:
    print(face.bbox)
    print(face.sex, face.age)

Exemplo n.º 9
0
import sys
import glob
import torch
import pickle
import os
import numpy as np
import cv2
import os.path as osp
import insightface
from insightface.app import FaceAnalysis
from insightface.utils import face_align

app = FaceAnalysis()
app.prepare(ctx_id=0, det_size=(224, 224))
output_size = 384

input_dir = '/root/codebase/FaceSynthetics'
output_dir = 'data/synthetics'

if not osp.exists(output_dir):
    os.makedirs(output_dir)

X = []
Y = []

for i in range(0, 100000):
    if i % 1000 == 0:
        print('loading', i)
    x = "%06d.png" % i
    img_path = osp.join(input_dir, x)
    img = cv2.imread(img_path)
Exemplo n.º 10
0
import cv2
import sys
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

assert insightface.__version__>='0.3'

parser = argparse.ArgumentParser(description='insightface app test')
# general
parser.add_argument('--ctx', default=0, type=int, help='ctx id, <0 means using cpu')
parser.add_argument('--det-size', default=640, type=int, help='detection size')
args = parser.parse_args()

app = FaceAnalysis()
app.prepare(ctx_id=args.ctx, det_size=(args.det_size,args.det_size))

img = ins_get_image('t1')
faces = app.get(img)
assert len(faces)==6
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)

# then print all-to-all face similarity
feats = []
for face in faces:
    feats.append(face.normed_embedding)
feats = np.array(feats, dtype=np.float32)
sims = np.dot(feats, feats.T)
print(sims)
Exemplo n.º 11
0
class InsightFaceWorker(faro.FaceWorker):
    '''
    classdocs
    '''
    def __init__(self, options):
        '''
        Constructor
        '''
        #import insightface
        from insightface.app import FaceAnalysis

        os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
        # kwargs = {'root':os.path.join(options.storage_dir,'models')}
        #load Retina face model

        if options.gpuid == -1:
            ctx_id = -1
        else:
            ctx_id = int(options.gpuid)

        #self.app = FaceAnalysis(allowed_modules=['detection','recognition'])
        self.app = FaceAnalysis()
        self.app.prepare(ctx_id=0, det_size=(640, 640))

        print("InsightFaces Models Loaded.")

    def detect(self, img, face_records, options):
        '''Run a face detector and return rectangles.'''
        #print('Running Face Detector For ArchFace')
        img = img[:, :, ::
                  -1]  #convert from rgb to bgr . There is a reordering from bgr to RGB internally in the detector code.

        faces = self.app.get(img)

        #print('Number of detections ', dets.shape[0])

        # Now process each face we found and add a face to the records list.
        idx = -1
        for face in faces:
            idx += 1
            face_record = face_records.face_records.add()

            face_record.detection.score = face.det_score
            ulx, uly, lrx, lry = face.bbox
            #create_square_bbox = np.amax(abs(lrx-ulx) , abs(lry-uly))
            face_record.detection.location.CopyFrom(
                pt.rect_val2proto(ulx, uly, abs(lrx - ulx), abs(lry - uly)))
            face_record.detection.detection_id = idx
            face_record.detection.detection_class = "FACE"
            #lmark = face_record.landmarks.add()
            for ldx in range(0, face.kps.shape[0]):
                lmark = face_record.landmarks.add()
                lmark.landmark_id = "point_%02d" % ldx
                lmark.location.x = face.kps[ldx][0]
                lmark.location.y = face.kps[ldx][1]

            normed_embedding = face.normed_embedding

            face_record.template.data.CopyFrom(
                pt.vector_np2proto(normed_embedding))

            if hasattr(face, 'landmark_2d_106'):
                attribute = face_record.attributes.add()
                attribute.key = 'landmark_2d_106'
                attribute.matrix.CopyFrom(
                    pt.matrix_np2proto(face.landmark_2d_106))

            if hasattr(face, 'landmark_3d_68'):
                attribute = face_record.attributes.add()
                attribute.key = 'landmark_3d_68'
                attribute.matrix.CopyFrom(
                    pt.matrix_np2proto(face.landmark_3d_68))

            if hasattr(face, 'sex'):
                attribute = face_record.attributes.add()
                attribute.key = 'sex'
                attribute.text = face.sex

            if hasattr(face, 'age'):
                attribute = face_record.attributes.add()
                attribute.key = 'age'
                attribute.fvalue = face.age

        if options.best:
            face_records.face_records.sort(key=lambda x: -x.detection.score)

            while len(face_records.face_records) > 1:
                del face_records.face_records[-1]

        #print('Done Running Face Detector For ArchFace')

    def locate(self, img, face_records, options):
        '''Locate facial features.'''
        pass  #the 5 landmarks points that retina face detects are stored during detection

    def align(self, image, face_records):
        '''Align the images to a standard size and orientation to allow 
        recognition.'''
        pass  # Not needed for this algorithm.

    def extract(self, img, face_records):
        '''Extract a template that allows the face to be matched.'''
        # Compute the 512D vector that describes the face in img identified by
        #shape.
        #print(type(img),img.shape)

    def scoreType(self):
        '''Return the method used to create a score from the template.
        
        By default server computation is required.
        
        SCORE_L1, SCORE_L2, SCORE_DOT, SCORE_SERVER
        '''
        return fsd.NEG_DOT

    def status(self):
        '''Return a simple status message.'''
        status_message = fsd.FaceServiceInfo()
        status_message.status = fsd.READY
        status_message.detection_support = True
        status_message.extract_support = True
        status_message.score_support = True
        status_message.score_type = self.scoreType()
        status_message.detection_threshold = self.recommendedDetectionThreshold(
        )
        status_message.match_threshold = self.recommendedScoreThreshold()
        status_message.algorithm = "InsightFace antelopev2"

        return status_message

    def recommendedDetectionThreshold(self):

        return 0.5

    def recommendedScoreThreshold(self, far=-1):
        '''
        Arcface does not provide a match threshold
        '''

        return -0.42838144