Exemplo n.º 1
0
def test_with(sess, solver, path, name, time_steps=26, batch_size=1):
    # Load test instances
    print("{timestamp}\t{memory}\tLoading test {name} instances ...".format(
        timestamp=timestamp(), memory=memory_usage(), name=name))
    test_generator = instance_loader.InstanceLoader(path)
    test_loss = 0.0
    test_accuracy = 0.0
    test_avg_pred = 0.0
    test_batches = 0
    # Run with the test instances
    print("{timestamp}\t{memory}\t{name} TEST SET BEGIN".format(
        timestamp=timestamp(), memory=memory_usage(), name=name))
    for b, batch in enumerate(test_generator.get_batches(batch_size)):
        l, a, p = run_and_log_batch(sess,
                                    solver,
                                    name,
                                    b,
                                    batch,
                                    time_steps,
                                    train=False)
        test_loss += l
        test_accuracy += a
        test_avg_pred += p
        test_batches += 1
    #end for
    # Summarize results and print test summary
    test_loss /= test_batches
    test_accuracy /= test_batches
    test_avg_pred /= test_batches
    print(
        "{timestamp}\t{memory}\t{name} TEST SET END Mean loss: {loss:.4f} Mean Accuracy = {accuracy} Mean prediction {avg_pred:.4f}"
        .format(loss=test_loss,
                accuracy=test_accuracy,
                avg_pred=test_avg_pred,
                timestamp=timestamp(),
                memory=memory_usage(),
                name=name))
    time_steps = 26
    batch_size = 128
    batches_per_epoch = 128

    early_stopping_window = [0 for _ in range(3)]
    early_stopping_threshold = 0.85

    # Build model
    print("{timestamp}\t{memory}\tBuilding model ...".format(
        timestamp=timestamp(), memory=memory_usage()))
    solver = build_neurosat(d)

    # Create batch loader
    print("{timestamp}\t{memory}\tLoading instances ...".format(
        timestamp=timestamp(), memory=memory_usage()))
    generator = instance_loader.InstanceLoader("./instances")
    # If you want to use the entire dataset on each epoch, use:
    # batches_per_epoch = len(generator.filenames) // batch_size

    test_generator = instance_loader.InstanceLoader("./test-instances")

    # Create model saver
    saver = tf.train.Saver()

    # Disallow GPU use
    config = tf.ConfigProto(
        #device_count = {"GPU":0},
        gpu_options=tf.GPUOptions(allow_growth=True), )
    with tf.Session(config=config) as sess:

        # Initialize global variables
Exemplo n.º 3
0
    time_steps = 32
    batch_size = 4
    batches_per_epoch = 128

    early_stopping_window = [0 for _ in range(3)]
    early_stopping_threshold = 0.85

    # Build model
    print("{timestamp}\t{memory}\tBuilding model ...".format(
        timestamp=timestamp(), memory=memory_usage()))
    solver = build_neurosat(d)

    # Create batch loader
    print("{timestamp}\t{memory}\tLoading instances ...".format(
        timestamp=timestamp(), memory=memory_usage()))
    generator = instance_loader.InstanceLoader("../adversarial-training-cnf")

    # Create model saver
    saver = tf.train.Saver()

    # Disallow GPU use
    config = tf.ConfigProto(device_count={"GPU": 0})
    with tf.Session(config=config) as sess:

        # Initialize global variables
        print(
            "{timestamp}\t{memory}\tInitializing global variables ... ".format(
                timestamp=timestamp(), memory=memory_usage()))
        sess.run(tf.global_variables_initializer())

        if os.path.exists("./tmp-64/neurosat.ckpt"):
Exemplo n.º 4
0
    with tf.Session() as sess:

        # Initialize global variables
        print(
            "{timestamp}\t{memory}\tInitializing global variables ... ".format(
                timestamp=timestamp(), memory=memory_usage()))
        sess.run(tf.global_variables_initializer())

        # Restore saved weights
        print("{timestamp}\t{memory}\tRestoring saved model ... ".format(
            timestamp=timestamp(), memory=memory_usage()))
        saver.restore(sess, "./tmp backup/neurosat.ckpt")

        # Define loader and get a batch with size 1 (one instance)
        loader = instance_loader.InstanceLoader('test-instances/sat/')
        batch = list(itertools.islice(loader.get_batches(1), 1))[0]

        time_steps = 100

        votes = np.zeros((time_steps, 2 * batch.n[0]))

        for t in range(0, time_steps):

            votes[t, :] = sess.run(solver["votes"],
                                   feed_dict={
                                       solver["gnn"].time_steps:
                                       t,
                                       solver["gnn"].matrix_placeholders["M"]:
                                       batch.get_dense_matrix(),
                                       solver["instance_SAT"]: