def render(assay): with st.sidebar.beta_expander('Customizations'): interface.info('Rename the labels.<br>Merge by giving the same name.') lab_map = {} keep_labs = [] pal = assay.get_palette() lab_set = np.unique(assay.get_labels()) for lab in lab_set: col1, col2, col3 = st.beta_columns([1, 0.1, 0.07]) with col1: new_name = st.text_input(f'Give a new name to {lab}', lab) with col2: st.markdown(f"<p style='margin-bottom:34px'></p>", unsafe_allow_html=True) pal[lab] = st.color_picker('', pal[lab], key=f'colorpicker-{lab}') with col3: st.markdown(f"<p style='margin-bottom:42px'></p>", unsafe_allow_html=True) keep = st.checkbox('', True, key=f'keep-cells-{lab}-{lab_set}') if keep: keep_labs.append(lab) if new_name != lab: lab_map[lab] = new_name pal[new_name] = pal[lab] del pal[lab] if len(keep_labs) == 0: interface.error('At least one label must be selected.') return lab_map, pal, keep_labs
def render(sample, assay_names): with st.sidebar.beta_expander('Preprocessing'): info = st.empty() assay_name = {DNA_ASSAY: 'DNA', PROTEIN_ASSAY: 'Protein'} assay_type = st.selectbox('Assay', assay_names, format_func=lambda x: assay_name[x]) if assay_type == DNA_ASSAY: dp, gq, af, std = sample.dna.metadata[DFT.PREPROCESS_ARGS] dp = st.slider('Minimum read depth (DP)', min_value=0, max_value=100, value=int(dp)) gq = st.slider('Minimum genotype quality (GQ)', min_value=0, max_value=100, value=int(gq)) af = st.slider('Minimum allele frequency (VAF)', min_value=0, max_value=100, value=int(af)) std = st.slider('Minimum standard deviation of AF', min_value=0, max_value=100, value=int(std)) ids = sample.dna.metadata[DFT.ALL_IDS] ids = list(ids[ids.argsort()]) drop_vars = st.multiselect( 'Variants to discard', ids, default=sample.dna.metadata[DFT.DROP_IDS]) keep_vars = st.multiselect( 'Variants to keep', ids, default=sample.dna.metadata[DFT.KEEP_IDS]) if len(keep_vars) != 0 and len(drop_vars) != 0: interface.error( 'Cannot keep and drop variants both. Choose only one of the options' ) assay_args = [drop_vars, keep_vars, dp, gq, af, std] elif assay_type == PROTEIN_ASSAY: ids = sample.protein.metadata[DFT.ALL_IDS] ids = list(ids[ids.argsort()]) drop_abs = st.multiselect( 'Antibodies to discard', ids, default=sample.protein.metadata[DFT.DROP_IDS]) assay_args = [drop_abs] interface.info(f'{assay_type} currently loaded', info) clicked = st.button('Process') return assay_type, clicked, assay_args
def run(assay, available_assays): clicked, method, description, cluster_kwargs, info = render(assay) first_pass_cluster(available_assays) if clicked: cluster(assay, method, description, **cluster_kwargs) interface.rerun() interface.info( f'Currently clustered using {assay.metadata[DFT.CLUSTER_DESCRIPTION]}', info)
def run(): file, load_raw, apply_filter, kind, should_save, save_name, info = render() if kind == DFT.S3: file = download(file) if file is None: interface.error( 'Please use the options available in the sidebar to load a sample.<br>' 'New h5 files should be copied to the <i>/h5/downloads/</i> folder where the app is stored.' ) sample = load(file, load_raw, apply_filter) interface.info(f'Currently loaded {sample.name}', info) return sample, should_save, save_name
def run(assay, available_assays): clicked, scale_attribute, pca_attribute, umap_attribute, pca_comps, info = render( assay) first_pass_prepare(available_assays) if clicked: prepare(assay, scale_attribute, pca_attribute, umap_attribute, pca_comps) interface.rerun() interface.info( f'Current transformations are:<br>' f'Scale on {assay.metadata[DFT.SCALE_ATTR]}<br>' f'PCA on {assay.metadata[DFT.PCA_ATTR]}<br>' f'UMAP on {assay.metadata[DFT.UMAP_ATTR]}', info)
def render(assay): with st.sidebar.beta_expander('Customizations'): interface.info('Rename the labels.<br>Merge by giving the same name.') lab_map = {} pal = assay.get_palette() for lab in np.unique(assay.get_labels()): col1, col2 = st.beta_columns([1, 0.15]) with col1: new_name = st.text_input(f'Give a new name to {lab}', lab) with col2: st.markdown(f"<p style='margin-bottom:34px'></p>", unsafe_allow_html=True) pal[lab] = st.color_picker('', pal[lab], key=f'colorpicker-{lab}') if new_name != lab: lab_map[lab] = new_name pal[new_name] = pal[lab] del pal[lab] return lab_map, pal
def render(sample, assay): interface.status('Creating visuals.') category, kind = assay.metadata[DFT.VISUAL_TYPE] options = DFT.VISUALS[category][1] column_sizes = DFT.VISUALS[category][0] columns = st.beta_columns(column_sizes) with columns[0]: new_category = st.selectbox("", list(DFT.VISUALS.keys())) if new_category != category: assay.add_metadata(DFT.VISUAL_TYPE, [new_category, DFT.VISUALS[new_category][1][0]]) interface.rerun() for i in range(len(options)): with columns[i + 1]: st.markdown(f"<p style='margin-bottom:33px'></p>", unsafe_allow_html=True) clicked = st.button(options[i], key=f'visual-{options[i]}') if clicked: kind = options[i] assay.add_metadata(DFT.VISUAL_TYPE, [category, kind]) if kind in DFT.LAYOUT: columns = st.beta_columns(DFT.LAYOUT[kind]) args_conatiner = columns[0] plot_columns = columns[1:] else: columns = st.beta_columns([0.75, 0.1, 2]) args_conatiner = columns[0] plot_columns = columns[2] with args_conatiner: kwargs = {} analyte_map = {'protein': 'Protein', 'dna': 'DNA'} if kind == DFT.SIGNATURES: kwargs['layer'] = st.selectbox('Layer', DFT.LAYERS[assay.name]) kwargs['attribute'] = st.selectbox( 'Signature', ['Median', 'Standard deviation', 'p-value']) elif kind == DFT.HEATMAP: kwargs['attribute'] = st.selectbox('Attribute', DFT.LAYERS[assay.name], key='Visualization Attribute') kwargs['splitby'] = st.selectbox('Split by', DFT.SPLITBY[assay.name]) kwargs['orderby'] = st.selectbox('Order by', DFT.LAYERS[assay.name], key='Visualization Orderby') kwargs['cluster'] = st.checkbox('Cluster within labels', True) kwargs['convolve'] = st.slider('Smoothing', 0, 100) elif kind == DFT.SCATTERPLOT: kwargs['attribute'] = st.selectbox('Attribute', DFT.ATTRS_2D) kwargs['colorby'] = st.selectbox('Color by', DFT.COLORBY[assay.name]) if kwargs['colorby'] not in DFT.SPLITBY[assay.name] + ['density']: features = st.multiselect( 'Features', list(assay.ids()), list(assay.ids())[:min(len(assay.ids()), 4)]) if len(features) != 0: kwargs['features'] = features elif kind == DFT.FEATURE_SCATTER: kwargs['layer'] = st.selectbox('Layer', DFT.LAYERS[assay.name]) feature1 = st.selectbox('Feature 1', list(assay.ids()), index=0) feature2 = st.selectbox('Feature 1', list(assay.ids()), index=2) kwargs['ids'] = [feature1, feature2] kwargs['colorby'] = st.selectbox('Color by', DFT.COLORBY[assay.name]) elif kind == DFT.VIOLINPLOT: kwargs['attribute'] = st.selectbox('Attribute', DFT.LAYERS[assay.name]) kwargs['splitby'] = st.selectbox('Split by', DFT.SPLITBY[assay.name]) kwargs['points'] = st.checkbox('Box and points', False) features = st.multiselect( 'Features', list(assay.ids()), list(assay.ids())[:min(len(assay.ids()), 4)]) if len(features) != 0: kwargs['features'] = features elif kind == DFT.RIDGEPLOT: kwargs['attribute'] = st.selectbox('Attribute', DFT.LAYERS[assay.name]) kwargs['splitby'] = st.selectbox('Split by', DFT.SPLITBY[assay.name]) features = st.multiselect( 'Features', list(assay.ids()), list(assay.ids())[:min(len(assay.ids()), 4)]) if len(features) != 0: kwargs['features'] = features elif kind == DFT.STRIPPLOT: kwargs['attribute'] = st.selectbox('Attribute', DFT.LAYERS[assay.name]) kwargs['colorby'] = st.selectbox('Colorby', DFT.LAYERS[assay.name]) features = st.multiselect( 'Features', list(assay.ids()), list(assay.ids())[:min(len(assay.ids()), 4)]) if len(features) != 0: kwargs['features'] = features elif kind == DFT.DNA_PROTEIN_PLOT: kwargs['analyte'] = st.selectbox( 'Analyte', ['protein'], format_func=lambda a: analyte_map[a]) kwargs['dna_features'] = st.multiselect('DNA features', list(sample.dna.ids()), sample.dna.ids()[:4]) kwargs['protein_features'] = st.multiselect( 'Protein features', list(sample.protein.ids()), sample.protein.ids()[:4]) elif kind == DFT.DNA_PROTEIN_HEATMAP: kwargs['clusterby'] = st.selectbox( 'Cluster by', ['dna', 'protein'], format_func=lambda a: analyte_map[a]) kwargs['sortby'] = st.selectbox( 'Sort by', ['dna', 'protein'], format_func=lambda a: analyte_map[a]) kwargs['dna_features'] = st.multiselect('DNA features', list(sample.dna.ids()), sample.dna.ids()) kwargs['protein_features'] = st.multiselect( 'Protein features', list(sample.protein.ids()), sample.protein.ids()) elif kind == DFT.METRICS: st.header('') interface.info( '<b>Some values might be missing in case the raw<br> files are not loaded.</b> These metrics can be<br> pasted into the metrics sheet as is.' ) elif kind == DFT.READ_DEPTH: if assay.name == PROTEIN_ASSAY: kwargs['layer'] = st.selectbox('Layer', DFT.LAYERS[assay.name]) kwargs['colorby'] = st.selectbox('Color by', ['density', None]) kwargs['features'] = st.multiselect( 'Features', list(assay.ids()), list(assay.ids())[:min(len(assay.ids()), 4)]) else: st.header('') interface.info('<b>Only applicable for the protein assay</b>') elif kind == DFT.ASSAY_SCATTER: kwargs['draw'] = sample.protein_raw is not None if not kwargs['draw']: interface.info('<b>Raw files needed for this plot.</b>') elif kind == DFT.DOWNLOAD: kwargs['item'] = st.selectbox('Object to Download', DFT.DOWNLOAD_ITEMS) kwargs['download'] = st.button('Download', key='download_button') return plot_columns, kind, kwargs
def render(): with st.sidebar.beta_expander('Files', expanded=True): interface.info('Load or download a file from s3') info = st.empty() col1, col2 = st.beta_columns([0.3, 1]) with col1: st.markdown(f"<sup><p style='margin-bottom:22px'></p></sup>", unsafe_allow_html=True) load_raw = st.checkbox('Raw') with col2: st.markdown(f"<sup><p style='margin-bottom:22px'></p></sup>", unsafe_allow_html=True) apply_filter = st.checkbox('Filter', False) link = st.text_input('Load from s3', value='') if not os.path.exists(DFT.ROOT / 'h5'): os.mkdir(DFT.ROOT / 'h5') if not os.path.exists(DFT.ROOT / 'h5/downloads'): os.mkdir(DFT.ROOT / 'h5/downloads/') if not os.path.exists(DFT.ROOT / 'h5/analyzed'): os.mkdir(DFT.ROOT / 'h5/analyzed/') downloaded_files = np.array(os.listdir(DFT.ROOT / 'h5/downloads/')) analyzed_files = np.array(os.listdir(DFT.ROOT / 'h5/analyzed/')) filenames = list(analyzed_files[analyzed_files.argsort()]) + list( downloaded_files[downloaded_files.argsort()]) filenames = [None] + [f for f in filenames if f[-3:] == '.h5'] def shownames(name): nonlocal analyzed_files if name in analyzed_files: return '* ' + name else: return name kind = None selector = st.empty() file = selector.selectbox('Load existing file', filenames, format_func=shownames) if link != '': kind = DFT.S3 file = link elif file is not None: if file in downloaded_files: file = DFT.ROOT / f'h5/downloads/{file}' else: file = DFT.ROOT / f'h5/analyzed/{file}' kind = DFT.LOCAL typed_name = st.text_input('Save, download or delete the given file', value='') def _get_file_from_name(typed_name): if typed_name[-3:] == '.h5': typed_name = typed_name[:-3] if typed_name + '.h5' in analyzed_files: typed_name = DFT.ROOT / f'h5/analyzed/{typed_name}.h5' elif typed_name + '.h5' in downloaded_files: typed_name = DFT.ROOT / f'h5/downloads/{typed_name}.h5' else: interface.error( f'Cannot find "{typed_name}" in the available files') return typed_name col1, col2, col3 = st.beta_columns([0.25, 0.4, 0.4]) with col1: st.markdown('') should_save = st.button('Save') with col2: st.markdown('') if st.button('Download'): download_path = _get_file_from_name(typed_name) interface.download(download_path) with col3: st.markdown('') if st.button('Delete'): typed_name = _get_file_from_name(typed_name) if file is not None and typed_name == file: interface.error( 'Cannot delete the file used in the current analysis.') os.remove(typed_name) interface.rerun() return file, load_raw, apply_filter, kind, should_save, typed_name, info