Exemplo n.º 1
0
def input_bounds(inputs,
                 delta,
                 lower_bound=0.,
                 upper_bound=1.,
                 preprocess_fn=None):
    """Calculates interval bounds on the network inputs.

  Args:
    inputs: 2D tensor of shape (batch_size, input_size), or 4D tensor of
      shape (batch_size, height, width, channels), of input examples.
    delta: Permitted perturbation on each input.
    lower_bound: Scalar - smallest permissible input (pixel) value.
    upper_bound: Scalar - largest permissible input (pixel) value.
    preprocess_fn: Optional function mapping tensor to tensor
      performing pre-processing on the raw inputs.

  Returns:
    `IntervalBounds` for the inputs, relative to `inputs`.
  """
    # Input range, according to permitted perturbation radius.
    if preprocess_fn:
        lb = preprocess_fn(tf.maximum(inputs - delta, lower_bound)) - inputs
        ub = preprocess_fn(tf.minimum(inputs + delta, upper_bound)) - inputs
    else:
        lb = tf.maximum(-delta, lower_bound - inputs)
        ub = tf.minimum(delta, upper_bound - inputs)
    return ibp.RelativeIntervalBounds(lb, ub, inputs)
    def test_batchnorm_bounds(self, batchnorm_class, dtype, tol, is_training):
        batch_size = 11
        input_size = 7
        output_size = 5

        lb_in = tf.random_normal(dtype=dtype, shape=(batch_size, input_size))
        ub_in = tf.random_normal(dtype=dtype, shape=(batch_size, input_size))
        lb_in, ub_in = tf.minimum(lb_in, ub_in), tf.maximum(lb_in, ub_in)
        nominal = tf.random_normal(dtype=dtype, shape=(batch_size, input_size))

        # Linear layer.
        w = tf.random_normal(dtype=dtype, shape=(input_size, output_size))
        b = tf.random_normal(dtype=dtype, shape=(output_size, ))

        # Batch norm layer.
        epsilon = 1.e-2
        bn_initializers = {
            'beta': tf.random_normal_initializer(),
            'gamma': tf.random_uniform_initializer(.1, 3.),
            'moving_mean': tf.random_normal_initializer(),
            'moving_variance': tf.random_uniform_initializer(.1, 3.)
        }
        batchnorm_module = batchnorm_class(offset=True,
                                           scale=True,
                                           eps=epsilon,
                                           initializers=bn_initializers)
        # Connect the batchnorm module to the graph.
        batchnorm_module(tf.random_normal(dtype=dtype,
                                          shape=(batch_size, output_size)),
                         is_training=is_training)

        bounds_in = ibp.RelativeIntervalBounds(lb_in - nominal,
                                               ub_in - nominal, nominal)
        bounds_out = bounds_in.apply_linear(None, w, b)
        bounds_out = bounds_out.apply_batch_norm(
            batchnorm_module, batchnorm_module.mean if is_training else
            batchnorm_module.moving_mean, batchnorm_module.variance
            if is_training else batchnorm_module.moving_variance,
            batchnorm_module.gamma, batchnorm_module.beta, epsilon)
        lb_out, ub_out = bounds_out.lower, bounds_out.upper

        # Separately, calculate dual objective by adjusting the linear layer.
        wn, bn = layer_utils.combine_with_batchnorm(w, b, batchnorm_module)
        bounds_out_lin = bounds_in.apply_linear(None, wn, bn)
        lb_out_lin, ub_out_lin = bounds_out_lin.lower, bounds_out_lin.upper

        init_op = tf.global_variables_initializer()

        with self.test_session() as session:
            session.run(init_op)
            (lb_out_val, ub_out_val, lb_out_lin_val,
             ub_out_lin_val) = session.run(
                 (lb_out, ub_out, lb_out_lin, ub_out_lin))
            self.assertAllClose(lb_out_val, lb_out_lin_val, atol=tol, rtol=tol)
            self.assertAllClose(ub_out_val, ub_out_lin_val, atol=tol, rtol=tol)
    def test_linear_bounds(self, dtype, tol):
        w = tf.constant([[1.0, 2.0, 3.0], [4.0, -5.0, 6.0]], dtype=dtype)
        b = tf.constant([0.1, 0.2, 0.3], dtype=dtype)
        lb_in = tf.constant([[-1.0, -1.0]], dtype=dtype)
        ub_in = tf.constant([[2.0, 2.0]], dtype=dtype)
        nominal = tf.constant([[3.1, 4.2]], dtype=dtype)

        bounds_in = ibp.RelativeIntervalBounds(lb_in - nominal,
                                               ub_in - nominal, nominal)
        bounds_out = bounds_in.apply_linear(None, w, b)
        lb_out, ub_out = bounds_out.lower, bounds_out.upper

        lb_out_exp = np.array([[-4.9, -11.8, -8.7]])
        ub_out_exp = np.array([[10.1, 9.2, 18.3]])

        with self.test_session() as session:
            lb_out_act, ub_out_act = session.run((lb_out, ub_out))
            self.assertAllClose(lb_out_exp, lb_out_act, atol=tol, rtol=tol)
            self.assertAllClose(ub_out_exp, ub_out_act, atol=tol, rtol=tol)
    def test_linear_bounds_shape(self, dtype):
        batch_size = 11
        input_size = 7
        output_size = 5

        w = tf.placeholder(dtype=dtype, shape=(input_size, output_size))
        b = tf.placeholder(dtype=dtype, shape=(output_size, ))
        lb_rel_in = tf.placeholder(dtype=dtype, shape=(batch_size, input_size))
        ub_rel_in = tf.placeholder(dtype=dtype, shape=(batch_size, input_size))
        nominal = tf.placeholder(dtype=dtype, shape=(batch_size, input_size))

        bounds_in = ibp.RelativeIntervalBounds(lb_rel_in, ub_rel_in, nominal)
        bounds_out = bounds_in.apply_linear(None, w, b)
        lb_out, ub_out = bounds_out.lower, bounds_out.upper

        self.assertEqual(dtype, lb_out.dtype)
        self.assertEqual(dtype, ub_out.dtype)
        self.assertEqual((batch_size, output_size), lb_out.shape)
        self.assertEqual((batch_size, output_size), ub_out.shape)
    def test_conv2d_bounds(self, dtype, tol):
        batch_size = 53
        input_height = 17
        input_width = 7
        kernel_height = 3
        kernel_width = 4
        input_channels = 3
        output_channels = 2
        padding = 'VALID'
        strides = (2, 1)

        w = tf.random_normal(dtype=dtype,
                             shape=(kernel_height, kernel_width,
                                    input_channels, output_channels))
        b = tf.random_normal(dtype=dtype, shape=(output_channels, ))
        lb_in = tf.random_normal(dtype=dtype,
                                 shape=(batch_size, input_height, input_width,
                                        input_channels))
        ub_in = tf.random_normal(dtype=dtype,
                                 shape=(batch_size, input_height, input_width,
                                        input_channels))
        lb_in, ub_in = tf.minimum(lb_in, ub_in), tf.maximum(lb_in, ub_in)
        nominal = tf.random_normal(dtype=dtype,
                                   shape=(batch_size, input_height,
                                          input_width, input_channels))

        bounds_in = ibp.RelativeIntervalBounds(lb_in - nominal,
                                               ub_in - nominal, nominal)
        bounds_out = bounds_in.apply_conv2d(None, w, b, padding, strides)
        lb_out, ub_out = bounds_out.lower, bounds_out.upper

        # Compare against equivalent linear layer.
        bounds_out_lin = _materialised_conv_bounds(w, b, padding, strides,
                                                   bounds_in)
        lb_out_lin, ub_out_lin = bounds_out_lin.lower, bounds_out_lin.upper

        with self.test_session() as session:
            (lb_out_val, ub_out_val, lb_out_lin_val,
             ub_out_lin_val) = session.run(
                 (lb_out, ub_out, lb_out_lin, ub_out_lin))
            self.assertAllClose(lb_out_val, lb_out_lin_val, atol=tol, rtol=tol)
            self.assertAllClose(ub_out_val, ub_out_lin_val, atol=tol, rtol=tol)
    def test_conv2d_bounds_shape(self, dtype):
        batch_size = 23
        input_height = 17
        input_width = 7
        kernel_height = 3
        kernel_width = 4
        input_channels = 3
        output_channels = 5
        padding = 'VALID'
        strides = (2, 1)

        # Expected output dimensions, based on convolution settings.
        output_height = 8
        output_width = 4

        w = tf.placeholder(dtype=dtype,
                           shape=(kernel_height, kernel_width, input_channels,
                                  output_channels))
        b = tf.placeholder(dtype=dtype, shape=(output_channels, ))
        lb_rel_in = tf.placeholder(dtype=dtype,
                                   shape=(batch_size, input_height,
                                          input_width, input_channels))
        ub_rel_in = tf.placeholder(dtype=dtype,
                                   shape=(batch_size, input_height,
                                          input_width, input_channels))
        nominal = tf.placeholder(dtype=dtype,
                                 shape=(batch_size, input_height, input_width,
                                        input_channels))

        bounds_in = ibp.RelativeIntervalBounds(lb_rel_in, ub_rel_in, nominal)
        bounds_out = bounds_in.apply_conv2d(None, w, b, padding, strides)
        lb_out, ub_out = bounds_out.lower, bounds_out.upper

        self.assertEqual(dtype, lb_out.dtype)
        self.assertEqual(dtype, ub_out.dtype)
        self.assertEqual(
            (batch_size, output_height, output_width, output_channels),
            lb_out.shape)
        self.assertEqual(
            (batch_size, output_height, output_width, output_channels),
            ub_out.shape)