Exemplo n.º 1
0
    def test_ph_multiples(self):
        """
        Test ability of ph_calc_phwater to process multiple pH measurements
        in a single block.
        """
        bout = ph.ph_battery(self.braw)
        tout = ph.ph_thermistor(self.traw)
        a434 = ph.ph_434_intensity(
            self.light)  # no unit tests, just checking to see if they work
        print a434
        a578 = ph.ph_578_intensity(self.light)
        print a578

        # reset calibration values to an array, replicating how ION will pass
        # the data when processing blocks of values.
        ea434 = np.ones(15) * self.ea434
        eb434 = np.ones(15) * self.eb434
        ea578 = np.ones(15) * self.ea578
        eb578 = np.ones(15) * self.eb578
        ind_slp = np.ones(15) * self.ind_slp
        ind_off = np.ones(15) * self.ind_off

        # test the function
        pout = ph.ph_calc_phwater(self.ref, self.light, tout, ea434, eb434,
                                  ea578, eb578, ind_slp, ind_off,
                                  self.salinity)

        # test above output where records were processed one at a time
        np.testing.assert_array_almost_equal(bout, self.vbatt, 4)
        np.testing.assert_array_almost_equal(tout, self.therm, 4)
        np.testing.assert_array_almost_equal(pout, self.pH, 4)
    def test_ph_multiples(self):
        """
        Test ability of ph_calc_phwater to process multiple pH measurements
        in a single block.
        """
        bout = ph.ph_battery(self.braw)
        tout = ph.ph_thermistor(self.traw)
        a434 = ph.ph_434_intensity(self.light)  # no unit tests, just checking to see if they work
        print a434
        a578 = ph.ph_578_intensity(self.light)
        print a578

        # reset calibration values to an array, replicating how ION will pass
        # the data when processing blocks of values.
        ea434 = np.ones(15) * self.ea434
        eb434 = np.ones(15) * self.eb434
        ea578 = np.ones(15) * self.ea578
        eb578 = np.ones(15) * self.eb578
        ind_slp = np.ones(15) * self.ind_slp
        ind_off = np.ones(15) * self.ind_off

        # test the function
        pout = ph.ph_calc_phwater(
            self.ref, self.light, tout, ea434, eb434, ea578, eb578, ind_slp, ind_off, self.salinity
        )

        # test above output where records were processed one at a time
        np.testing.assert_array_almost_equal(bout, self.vbatt, 4)
        np.testing.assert_array_almost_equal(tout, self.therm, 4)
        np.testing.assert_array_almost_equal(pout, self.pH, 4)
Exemplo n.º 3
0
    def test_ph_singles(self):
        """
        Test ability of ph_calc_phwater to process a single pH measurement, one
        measurement at a time.
        """
        # determine the number of records and create the output arrays
        nRec = self.ref.shape[0]
        bout = np.zeros(nRec, dtype=np.float)
        tout = np.zeros(nRec, dtype=np.float)
        a434 = np.zeros((nRec, 23), dtype=np.float)
        a578 = np.zeros((nRec, 23), dtype=np.float)
        pout = np.zeros(nRec, dtype=np.float)

        # index through the records, calculating pH one record at a time
        for iRec in range(nRec):
            # compute the battery voltage, final temperature in deg_C and pH,
            # record by record.
            bout[iRec] = ph.ph_battery(self.braw[iRec])
            a434[iRec, :] = ph.ph_434_intensity(self.light[iRec, :])
            a578[iRec, :] = ph.ph_578_intensity(self.light[iRec, :])
            tout[iRec] = ph.ph_thermistor(self.traw[iRec])
            pout[iRec] = ph.ph_calc_phwater(self.ref[iRec, :],
                                            self.light[iRec, :], tout[iRec],
                                            self.ea434, self.eb434, self.ea578,
                                            self.eb578, self.ind_slp,
                                            self.ind_off, self.salinity[iRec])

        # test above output where records were processed one at a time
        np.testing.assert_array_almost_equal(bout, self.vbatt, 4)
        np.testing.assert_array_almost_equal(tout, self.therm, 4)
        np.testing.assert_array_almost_equal(pout, self.pH, 4)
Exemplo n.º 4
0
    def test_ph_calc_phwater(self):
        stats = []

        # create 12000 data points
        light = np.repeat(self.light, 2000, axis=0)
        ref = np.repeat(self.ref, 2000, axis=0)
        traw = np.repeat(self.traw, 2000)
        therm = ph_thermistor(traw)

        # reset calibration values to an array, replicating how ION will pass
        # the data when processing blocks of values.
        ea434 = np.ones(12000) * self.ea434
        eb434 = np.ones(12000) * self.eb434
        ea578 = np.ones(12000) * self.ea578
        eb578 = np.ones(12000) * self.eb578
        ind_slp = np.ones(12000) * self.ind_slp
        ind_off = np.ones(12000) * self.ind_off

        # test the function
        self.profile(stats, ph_calc_phwater, ref, light, therm, ea434, eb434,
                     ea578, eb578, ind_slp, ind_off)
    def test_ph_multiples(self):
        """
        Test ability of ph_calc_phwater to process multiple pH measurements
        in a single block.
        """
        bout = self.braw * 15. / 4096.
        tout = ph.ph_thermistor(self.traw)

        # reset calibration values to an array, replicating how ION will pass
        # the data when processing blocks of values.
        ea434 = np.ones(6) * self.ea434
        eb434 = np.ones(6) * self.eb434
        ea578 = np.ones(6) * self.ea578
        eb578 = np.ones(6) * self.eb578

        # test the function
        pout = ph.ph_calc_phwater(self.ref, self.light, tout, ea434, eb434, ea578, eb578)

        # test above output where records were processed one at a time
        np.testing.assert_array_almost_equal(bout, self.vbatt, 4)
        np.testing.assert_array_almost_equal(tout, self.therm, 4)
        np.testing.assert_array_almost_equal(pout, self.pH, 4)
    def test_ph_singles(self):
        """
        Test ability of ph_calc_phwater to process a single pH measurement, one
        measurement at a time.
        """
        # determine the number of records and create the output arrays
        nRec = self.ref.shape[0]
        bout = np.zeros(nRec, dtype=np.float)
        tout = np.zeros(nRec, dtype=np.float)
        a434 = np.zeros((nRec, 23), dtype=np.float)
        a578 = np.zeros((nRec, 23), dtype=np.float)
        pout = np.zeros(nRec, dtype=np.float)

        # index through the records, calculating pH one record at a time
        for iRec in range(nRec):
            # compute the battery voltage, final temperature in deg_C and pH,
            # record by record.
            bout[iRec] = ph.ph_battery(self.braw[iRec])
            a434[iRec, :] = ph.ph_434_intensity(self.light[iRec, :])
            a578[iRec, :] = ph.ph_578_intensity(self.light[iRec, :])
            tout[iRec] = ph.ph_thermistor(self.traw[iRec])
            pout[iRec] = ph.ph_calc_phwater(
                self.ref[iRec, :],
                self.light[iRec, :],
                tout[iRec],
                self.ea434,
                self.eb434,
                self.ea578,
                self.eb578,
                self.ind_slp,
                self.ind_off,
                self.salinity[iRec],
            )

        # test above output where records were processed one at a time
        np.testing.assert_array_almost_equal(bout, self.vbatt, 4)
        np.testing.assert_array_almost_equal(tout, self.therm, 4)
        np.testing.assert_array_almost_equal(pout, self.pH, 4)
Exemplo n.º 7
0
def main():
    # load  the input arguments
    args = inputs()
    infile = os.path.abspath(args.infile)
    outfile = os.path.abspath(args.outfile)
    coeff_file = os.path.abspath(args.coeff_file)
    blnk_file = os.path.abspath(args.devfile)

    # check for the source of calibration coeffs and load accordingly
    dev = Calibrations(coeff_file)  # initialize calibration class
    if os.path.isfile(coeff_file):
        # we always want to use this file if it exists
        dev.load_coeffs()
    elif args.csvurl:
        # load from the CI hosted CSV files
        csv_url = args.csvurl
        dev.read_csv(csv_url)
        dev.save_coeffs()
    else:
        raise Exception(
            'A source for the PCO2W calibration coefficients could not be found'
        )

    # check for the source of instrument blanks and load accordingly
    blank = Blanks(blnk_file, 1.0,
                   1.0)  # initialize the calibration class using default blank
    if os.path.isfile(blnk_file):
        blank.load_blanks()
    else:
        blank.save_blanks()

    # load the PCO2W data file
    with open(infile, 'rb') as f:
        pco2w = Munch(json.load(f))

    if len(pco2w.time) == 0:
        # This is an empty file, end processing
        return None

    # convert the raw battery voltage and thermistor values from counts
    # to V and degC, respectively
    pco2w.thermistor = ph_thermistor(np.array(pco2w.thermistor_raw)).tolist()
    pco2w.voltage_battery = ph_battery(np.array(
        pco2w.voltage_battery)).tolist()

    # compare the instrument clock to the GPS based DCL time stamp
    # --> PCO2W uses the OSX date format of seconds since 1904-01-01
    mac = datetime.strptime("01-01-1904", "%m-%d-%Y")
    offset = []
    for i in range(len(pco2w.time)):
        rec = mac + timedelta(seconds=pco2w.record_time[i])
        rec.replace(tzinfo=timezone('UTC'))
        dcl = datetime.utcfromtimestamp(pco2w.time[i])

        # we use the sample collection time as the time record for the sample.
        # the record_time, however, is when the sample was processed. so the
        # true offset needs to include the difference between the collection
        # and processing times
        collect = dcl_to_epoch(pco2w.collect_date_time[i])
        process = dcl_to_epoch(pco2w.process_date_time[i])
        diff = process - collect
        if np.isnan(diff):
            diff = 300
        offset.append((rec - dcl).total_seconds() - diff)

    pco2w.time_offset = offset

    # set calibration inputs to pCO2 calculations
    ea434 = 19706.  # factory constants
    eb434 = 3073.  # factory constants
    ea620 = 34.  # factory constants
    eb620 = 44327.  # factory constants

    # calculate pCO2
    pCO2 = []
    blank434 = []
    blank620 = []

    for i in range(len(pco2w.record_type)):
        if pco2w.record_type[i] == 4:
            # this is a light measurement, calculate the pCO2
            pCO2.append(
                pco2_pco2wat(pco2w.record_type[i], pco2w.light_measurements[i],
                             pco2w.thermistor[i], ea434, eb434, ea620, eb620,
                             dev.coeffs['calt'], dev.coeffs['cala'],
                             dev.coeffs['calb'], dev.coeffs['calc'],
                             blank.blank_434, blank.blank_620)[0])

            # record the blanks used
            blank434.append(blank.blank_434)
            blank620.append(blank.blank_620)

        if pco2w.record_type[i] == 5:
            # this is a dark measurement, update and save the new blanks
            blank.blank_434 = pco2_blank(pco2w.light_measurements[i][6])
            blank.blank_620 = pco2_blank(pco2w.light_measurements[i][7])
            blank.save_blanks()

            blank434.append(blank.blank_434)
            blank620.append(blank.blank_620)

    # save the resulting data to a json formatted file
    pco2w.pCO2 = pCO2
    pco2w.blank434 = blank434
    pco2w.blank620 = blank620

    with open(outfile, 'w') as f:
        f.write(pco2w.toJSON())
    def test_ph_phwater(self):
        """
        Test ph_phwater function.

        Values based on test strings in DPS and available on Alfresco. Note,
        had to recompute output values using original Matlab code as those
        provided in DPS do not match the output calculateded from those input
        strings.
        
        OOI (2012). Data Product Specification for pH of Seawater. Document
            Control Number 1341-00510. https://alfresco.oceanobservatories.org/
            (See: Company Home >> OOI >> Controlled >> 1000 System Level >>
            1341-00510_Data_Product_SPEC_PHWATER_OOI.pdf)
            
        Implemented by Christopher Wingard, April 2013
        """
        raw_strings = np.array([
            '*A3E70ACAB31FBB05B007DD066A074708A607E00669074B08A207E20669074B08A207E20667074D08A307E5066B074D08A407E2066B074C08A307E2065F0749088D07DB05EB0745076307E3047A074D045F07E302C6074801EE07DF01B8074700EB07DB014C074600A307E101400748009E07E00173074700C107E101CD074A010307E002530746017807E202EA074C021507E30383074B02D507E20412074C03AF07E104910748048107E204F0074F053907DE0540074905DF07DF05820746066807E205AF074906D207DF05D90746072F07E105F00745076A07E40609074C07A500000C4405B013',
            '*A3E70ACAB349EB05B507E40668075408AA07DE0667075208AB07DD066A075108AD07E20669075408AD07DF066B075308B007DC0667074E08A907E206600750089207DD05EB074F075707DF046C0754042A07E302CB075301D407E001C3075000E207E3015C074E009907E2014A074C009007DF017C075100B007E201DC075000FB07DF02650752016E07E203000751021307DF0395075102D407E1041F075103A507E3049A0752047907E304F9074E053207DD054C075205DF07DD05820751066507E005B4075106CF07E705DF0754072F07E105F60751077507DF060B075107AC00000C4305B671',
            '*A3E70ACAB3741B05B807DE0666075408AE07E00668075408AD07DF0668075808B007DE066B075308B207E4066A075208B007E0066B075408B107E206600759089407DF05E40751073C07E004770757041407E102E0075201C307DD01DE074F00D807DF016F0756008E07E3015E0755008507DA018F075500A707DF01E8075300E707E6026F0754015207DF02FF075201E707DF0393075102A507DE041F0751037907DF049B0752045207DD04F80756051007E10548075405BB07DE05860752065007E305B2075106C407E605D90754072007DC05F2074F076307DF060B075407A400000C4305B8B5',
            '*A3E70ACAB39E4B05BC07DF0668075A08B907E00668075A08B507DF0668075808B607E20667075A08B807DE0668075B08B507DE0665075A08B407E00661075A089D07E205E9075A075807DE048B0758044707DC02FC075901E807DE01E6075900E207E80174075C009707DE01630758008C07E1018D075700A607DC01E9075600E807E10264075A014C07DE02FC075701EC07E10391075802A907E104210757038007DF04910758044B07E304F50757051207E40547075805C007E0057F0757064807E005B0075706BD07E705D5075C071C07E105F2075C076B07E00608075B07A400000C4205BC88',
            '*A3E70ACAB3C87B05BA07D90666075908B407DF0664075B08B207DD0666075708B407E10666075608B607DE0668075A08B707DF0669075808B607DF065E0759089907DE05E8075C074707DF0476075A041007DF02D3075501AF07E401D5075D00CB07E3016C0756008A07E0015F0757008107E00191075800A307E301FA075C00EA07E6027D075A015907DF030C075701F107DD03A3075802B307DD042D0756038607DF04A30757045C07DF04FD0756051A07E0054E075C05C707E1058B075C065507DD05B6075606C807E005DA0756072307DF05F20757076907E0060D075807AB00000C4205BA99',
            '*A3E70ACAB3F2AB05B207E00669075108AF07DD0663075308AB07E40666075208AB07DB0668075108A907DC0663074C08AA07DE0666075008AF07DF065C0751088F07DF05E30753073B07DF048A074C043807DE02F3074D01D707DC01DF074E00D807DD016F0752008E07DC0160074F008807DE018B074C00A107E301E7075400DF07DE025C0750014507DD02F1074F01D607D903870749029307DC04110751036007E004920753044307DA04EE074B04FC07DC0543074C05B107DC05810749064707DC05B0074C06B207DE05D4074F071507DF05EE0750075C07DF06070751079900000C4105B20D'
        ])

        # reagent constants (instrument and reagent bag specific)
        ea434 = 17709.
        ea578 = 107.
        eb434 = 2287.
        eb578 = 38913.
        
        # expected outputs
        vbatt = np.array([11.4990, 11.4954, 11.4954,
                          11.4917, 11.4917, 11.4880])       
        therm = np.array([25.9204, 25.7612, 25.7082,
                           25.6024, 25.6552, 25.8673])
        pH = np.array([8.0077, 8.0264, 8.0557,
                       8.0547, 8.0645, 8.0555])

        # parse the data strings
        ref = np.zeros(16, dtype=np.int)
        light = np.zeros(92, dtype=np.int)
        pHout = np.zeros(6)
        tout = np.zeros(6)
        vbout = np.zeros(6)
        for i in range(6):
            # parse the raw strings into subelements, such as the driver would
            # provide.
            s = raw_strings[i]
            braw = int(s[455:459], 16)
            tend = int(s[459:463], 16)
            strt = 19; step = 4
            for j in range(16):
                ref[j] = int(s[strt:strt+step], 16)
                strt += step            

            strt = 83; step = 4
            for j in range(92):
                light[j] = int(s[strt:strt+step], 16)
                strt += step            

            # compute the battery voltage, final temperature in deg_C and pH
            vbout[i] = braw * 15. / 4096.
            tout[i] = phfunc.ph_thermistor(tend)
            pHout[i] = phfunc.ph_phwater(ref, light, tout[i], ea434, eb434, ea578, eb578)
            
        self.assertTrue(np.allclose(pHout, pH, rtol=1e-4, atol=0))
        self.assertTrue(np.allclose(tout, therm, rtol=1e-4, atol=0))
        self.assertTrue(np.allclose(vbout, vbatt, rtol=1e-4, atol=0))
Exemplo n.º 9
0
def main():
    # load  the input arguments
    args = inputs()
    infile = os.path.abspath(args.infile)
    outfile = os.path.abspath(args.outfile)

    # load the parsed, json data file
    with open(infile, 'rb') as f:
        phsen = Munch(json.load(f))

    if len(phsen.time) == 0:
        # This is an empty file, end processing
        return None

    # convert the raw battery voltage and thermistor values from counts
    # to V and degC, respectively
    phsen.thermistor_start = ph_thermistor(np.array(
        phsen.thermistor_start)).tolist()
    therm = ph_thermistor(np.array(phsen.thermistor_end))
    phsen.thermistor_end = therm.tolist()
    phsen.voltage_battery = ph_battery(np.array(
        phsen.voltage_battery)).tolist()

    # compare the instrument clock to the GPS based DCL time stamp
    # --> PHSEN uses the OSX date format of seconds since 1904-01-01
    mac = datetime.strptime("01-01-1904", "%m-%d-%Y")
    offset = []
    for i in range(len(phsen.time)):
        rec = mac + timedelta(seconds=phsen.record_time[i])
        rec.replace(tzinfo=timezone('UTC'))
        dcl = datetime.utcfromtimestamp(phsen.time[i])
        offset.append((rec - dcl).total_seconds())

    phsen.time_offset = offset

    # set default calibration values (could later roll this into a coefficients file)
    nRec = len(phsen.thermistor_end)
    ea434 = np.ones(nRec) * 17533.
    eb434 = np.ones(nRec) * 2229.
    ea578 = np.ones(nRec) * 101.
    eb578 = np.ones(nRec) * 38502.
    slope = np.ones(nRec) * 0.9698
    offset = np.ones(nRec) * 0.2484

    # if available, load the co-located CTDBP data file corresponding to the
    # PHSEN data file
    if args.ctdfile:
        # load the ctd data
        ctdfile = os.path.abspath(args.ctdfile)
        with open(ctdfile, 'rb') as f:
            ctd = Munch(json.load(f))

        data = np.array(
            [ctd.time, ctd.conductivity, ctd.temperature, ctd.pressure])

        # process the bursts, creating a median averaged dataset of the bursts,
        # yielding a 15 minute data record
        m = np.where(np.diff(data[0, :]) > 300)  # find beginning of each burst
        burst = []
        strt = 0
        # process the bursts ...
        for indx in m[0] + 1:
            time = np.atleast_1d(np.mean(data[0, strt:indx]))
            smpl = np.median(data[1:, strt:indx], axis=1)
            burst.append(np.hstack((time, smpl)))
            strt = indx

        # ... and the last burst
        time = np.atleast_1d(np.mean(data[0, strt:]))
        smpl = np.median(data[1:, strt:], axis=1)
        burst.append(np.hstack((time, smpl)))
        burst = np.atleast_1d(burst)

        # interpolate the ctd burst data records onto the phsen record
        interpf = sci.interp1d(burst[:, 0],
                               burst[:, 1:],
                               kind='linear',
                               axis=0,
                               bounds_error=False)
        ctd = interpf(np.array(phsen.time))

        # calculate the salinity from the CTD data,
        psu = ctd_pracsal(ctd[:, 0], ctd[:, 1], ctd[:, 2]).reshape(
            (ctd.shape[0], 1))
        ctd = np.hstack((ctd, psu))
    else:
        data = np.array((np.nan, np.nan, np.nan, args.salinity))
        ctd = np.tile(data, (len(phsen.time), 1))

    # calculate the pH
    refnc = np.array(phsen.reference_measurements)
    light = np.array(phsen.light_measurements)

    pH = ph_calc_phwater(refnc, light, therm, ea434, eb434, ea578, eb578,
                         slope, offset, ctd[:, 3])
    phsen.pH = pH.tolist()

    # save the resulting data to a json formatted file
    with open(outfile, 'w') as f:
        f.write(phsen.toJSON())