Exemplo n.º 1
0
 def test_config_dictionaries(self):
     """check iota2_parameters class
     """
     from iota2.Common.ServiceConfigFile import iota2_parameters
     sensors_parameters = iota2_parameters(
         self.config_test).get_sensors_parameters("T31TCJ")
     self.assertTrue(len(sensors_parameters.keys()) == 3)
Exemplo n.º 2
0
def preprocess(tile_name,
               config_path,
               output_path,
               working_directory=None,
               RAM=128):
    """
    preprocessing input rasters data by tile
    
    Parameters
    ----------
    tile_name [string]
        tile's name
    config_path [string]
        absolute path to the configuration file
    output_path : str
        iota2 output path
    working_directory [string]
        absolute path to a working directory
    RAM [int]
        pipeline's size (Mo)
    """
    from iota2.Sensors.Sensors_container import sensors_container
    from iota2.Common.ServiceConfigFile import iota2_parameters
    running_parameters = iota2_parameters(config_path)
    sensors_parameters = running_parameters.get_sensors_parameters(tile_name)

    remote_sensor_container = sensors_container(tile_name, working_directory,
                                                output_path,
                                                **sensors_parameters)
    remote_sensor_container.sensors_preprocess(available_ram=RAM)
Exemplo n.º 3
0
    def step_inputs(self):
        """
        Return
        ------
            the return could be and iterable or a callable
        """
        from iota2.Common import FileUtils as fut
        from iota2.Classification.ImageClassifier import autoContext_classification_param
        from iota2.Common.ServiceConfigFile import iota2_parameters

        if self.enable_autoContext is False and self.use_scikitlearn is False:
            parameters = fut.parseClassifCmd(
                os.path.join(self.output_path, "cmd", "cla", "class.txt"))
        elif self.enable_autoContext is True:
            parameters = autoContext_classification_param(
                self.output_path, self.data_field)
        elif self.use_scikitlearn:
            parameters = fut.parseClassifCmd(
                os.path.join(self.output_path, "cmd", "cla", "class.txt"))
            running_parameters = iota2_parameters(self.cfg)
            parameters = [{
                "mask":
                param[1],
                "model":
                param[2],
                "stat":
                param[3],
                "out_classif":
                param[4],
                "out_confidence":
                param[5],
                "out_proba":
                None,
                "working_dir":
                param[6],
                "tile_name":
                param[8],
                "sar_optical_post_fusion":
                SCF.serviceConfigFile(self.cfg).getParam(
                    'argTrain', 'dempster_shafer_SAR_Opt_fusion'),
                "output_path":
                SCF.serviceConfigFile(self.cfg).getParam(
                    'chain', 'outputPath'),
                "sensors_parameters":
                running_parameters.get_sensors_parameters(tile_name=param[8]),
                "pixel_type":
                param[17],
                "number_of_chunks":
                self.scikit_tile_split,
                "targeted_chunk":
                target_chunk,
                "ram":
                param[19]
            } for param in parameters
                          for target_chunk in range(self.scikit_tile_split)]
        return parameters
Exemplo n.º 4
0
    def step_execute(self):
        """
        Return
        ------
        lambda
            the function to execute as a lambda function. The returned object
            must be a lambda function.
        """
        from iota2.MPI import launch_tasks as tLauncher
        from iota2.Learning import TrainSkLearn
        from iota2.Learning.TrainSkLearn import cast_config_cv_parameters
        from iota2.Learning.trainAutoContext import train_autoContext
        from iota2.Common.ServiceConfigFile import iota2_parameters

        if self.use_scikitlearn is True and self.enable_autoContext is False:
            model_parameters = SCF.serviceConfigFile(
                self.cfg).getSection("scikit_models_parameters")
            sk_model = model_parameters['model_type']
            del model_parameters['model_type']
            del model_parameters['standardization']
            del model_parameters['cross_validation_grouped']
            del model_parameters['cross_validation_folds']
            del model_parameters['cross_validation_parameters']

            cv_params = SCF.serviceConfigFile(self.cfg).getParam(
                "scikit_models_parameters", "cross_validation_parameters")
            cv_params = cast_config_cv_parameters(cv_params)

            step_function = lambda x: TrainSkLearn.sk_learn(
                x["learning_file"], x["feat_labels"], x[
                    "model_path"], self.data_field, sk_model,
                SCF.serviceConfigFile(self.cfg).getParam(
                    "scikit_models_parameters", "standardization"), cv_params,
                SCF.serviceConfigFile(self.cfg).getParam(
                    "scikit_models_parameters", "cross_validation_grouped"),
                SCF.serviceConfigFile(self.cfg).getParam(
                    "scikit_models_parameters", "cross_validation_folds"), self
                .available_ram, **model_parameters)
        elif self.enable_autoContext is True:
            running_parameters = iota2_parameters(self.cfg)
            step_function = lambda x: train_autoContext(
                x,
                SCF.serviceConfigFile(self.cfg).getParam("chain", "dataField"
                                                         ), self.output_path,
                running_parameters.get_sensors_parameters(self.tiles[
                    0]), self.superpix_data_field, self.autoContext_iterations,
                self.RAM, self.workingDirectory)
        else:
            bashLauncherFunction = tLauncher.launchBashCmd
            step_function = lambda x: bashLauncherFunction(x)

        return step_function
Exemplo n.º 5
0
    def step_execute(self):
        """
        Return
        ------
        lambda
            the function to execute as a lambda function. The returned object
            must be a lambda function.
        """
        from iota2.Classification.ImageClassifier import autoContext_launch_classif
        from iota2.Classification import ImageClassifier as imageClassifier
        from iota2.Common.ServiceConfigFile import iota2_parameters
        from iota2.Classification import skClassifier
        from iota2.MPI import launch_tasks as tLauncher

        if self.enable_autoContext is False and self.use_scikitlearn is False:
            launch_py_cmd = tLauncher.launchPythonCmd
            step_function = lambda x: launch_py_cmd(
                imageClassifier.launchClassification, *x)
        elif self.enable_autoContext is True and self.use_scikitlearn is False:
            running_parameters = iota2_parameters(self.cfg)

            step_function = lambda x: autoContext_launch_classif(
                x,
                SCF.serviceConfigFile(self.cfg).getParam(
                    'argTrain', 'classifier'), x["tile"],
                SCF.serviceConfigFile(self.cfg).getParam(
                    'argClassification', 'enable_probability_map'),
                SCF.serviceConfigFile(self.cfg).getParam('dimRed', 'dimRed'),
                SCF.serviceConfigFile(self.cfg).getParam('chain', 'dataField'),
                SCF.serviceConfigFile(self.cfg).getParam(
                    'GlobChain', 'writeOutputs'),
                SCF.serviceConfigFile(self.cfg).getParam(
                    'dimRed', 'reductionMode'),
                SCF.serviceConfigFile(self.cfg).getParam(
                    'chain', 'outputPath'),
                SCF.serviceConfigFile(self.cfg).getParam(
                    'argTrain', 'dempster_shafer_SAR_Opt_fusion'),
                SCF.serviceConfigFile(self.cfg).getParam(
                    'chain', 'nomenclaturePath'),
                running_parameters.get_sensors_parameters(x["tile"]), self.RAM,
                self.workingDirectory)
        elif self.enable_autoContext is False and self.use_scikitlearn is True:
            step_function = lambda x: skClassifier.predict(**x)

        return step_function
Exemplo n.º 6
0
    def step_execute(self):
        """
        Return
        ------
        lambda
            the function to execute as a lambda function. The returned object
            must be a lambda function.
        """
        from iota2.Segmentation import segmentation
        from iota2.Common.ServiceConfigFile import iota2_parameters

        running_parameters = iota2_parameters(self.cfg)

        step_function = lambda x: segmentation.slicSegmentation(
            x,
            SCF.serviceConfigFile(self.cfg).getParam('chain', 'outputPath'),
            running_parameters.get_sensors_parameters(x), self.RAM, self.
            workingDirectory)
        return step_function
Exemplo n.º 7
0
    def step_execute(self):
        """
        Return
        ------
        lambda
            the function to execute as a lambda function. The returned object
            must be a lambda function.
        """
        from iota2.Sensors.Sensors_container import sensors_container
        from iota2.Common.ServiceConfigFile import iota2_parameters

        check_inputs = SCF.serviceConfigFile(self.cfg).getParam(
            'chain', 'check_inputs')
        tiles = SCF.serviceConfigFile(self.cfg).getParam('chain',
                                                         'listTile').split(" ")
        output_path = SCF.serviceConfigFile(self.cfg).getParam(
            'chain', 'outputPath')
        running_parameters = iota2_parameters(
            SCF.serviceConfigFile(self.cfg).pathConf)
        sensors_parameters = running_parameters.get_sensors_parameters(
            tiles[0])
        sensor_tile_container = sensors_container(tiles[0], None, output_path,
                                                  **sensors_parameters)

        sensor_path = sensor_tile_container.get_enabled_sensors_path()[0]
        step_function = lambda x: IOTA2_dir.generate_directories(
            x, check_inputs,
            SCF.serviceConfigFile(self.cfg).getParam(
                'chain', 'merge_final_classifications'),
            SCF.serviceConfigFile(self.cfg).getParam('chain', 'groundTruth'),
            SCF.serviceConfigFile(self.cfg).getParam('chain', 'regionPath'),
            SCF.serviceConfigFile(self.cfg).getParam('chain', 'dataField'),
            SCF.serviceConfigFile(self.cfg).getParam('chain', 'regionField'),
            int(
                SCF.serviceConfigFile(self.cfg).getParam('GlobChain', 'proj').
                split(":")[-1]), sensor_path, tiles)
        return step_function
Exemplo n.º 8
0
def validity(tile_name,
             config_path,
             output_path,
             maskOut_name,
             view_threshold,
             workingDirectory=None,
             RAM=128):
    """
    function dedicated to compute validity raster/vector by tile

    Parameters
    ----------
    tile_name [string]
        tile's name
    config_path [string]
        absolute path to the configuration file
    maskOut_name [string]
        output vector mask's name
    view_threshold [int]
        threshold
    working_directory [string]
        absolute path to a working directory
    RAM [int]
        pipeline's size (Mo)
    """
    import os
    import shutil
    from iota2.Common.ServiceConfigFile import iota2_parameters
    from iota2.Sensors.Sensors_container import sensors_container
    from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
    from iota2.Common.OtbAppBank import CreateBandMathApplication
    from iota2.Common.Utils import run
    from iota2.Common.FileUtils import erodeShapeFile
    from iota2.Common.FileUtils import removeShape
    from iota2.Common.FileUtils import ensure_dir

    features_dir = os.path.join(output_path, "features", tile_name)
    validity_name = "nbView.tif"

    validity_out = os.path.join(features_dir, validity_name)
    validity_processing = validity_out
    if workingDirectory:
        ensure_dir(os.path.join(workingDirectory, tile_name))
        validity_processing = os.path.join(workingDirectory, tile_name,
                                           validity_name)

    running_parameters = iota2_parameters(config_path)
    sensors_parameters = running_parameters.get_sensors_parameters(tile_name)
    remote_sensor_container = sensors_container(tile_name, workingDirectory,
                                                output_path,
                                                **sensors_parameters)

    sensors_time_series_masks = remote_sensor_container.get_sensors_time_series_masks(
        available_ram=RAM)
    sensors_masks_size = []
    sensors_masks = []
    for sensor_name, (time_series_masks, time_series_dep,
                      nb_bands) in sensors_time_series_masks:
        if sensor_name.lower() == "sentinel1":
            for _, time_series_masks_app in list(time_series_masks.items()):
                time_series_masks_app.Execute()
                sensors_masks.append(time_series_masks_app)
        else:
            time_series_masks.Execute()
            sensors_masks.append(time_series_masks)
        sensors_masks_size.append(nb_bands)

    total_dates = sum(sensors_masks_size)
    merge_masks = CreateConcatenateImagesApplication({
        "il": sensors_masks,
        "ram": str(RAM)
    })
    merge_masks.Execute()

    validity_app = CreateBandMathApplication({
        "il":
        merge_masks,
        "exp":
        "{}-({})".format(
            total_dates,
            "+".join(["im1b{}".format(i + 1) for i in range(total_dates)])),
        "ram":
        str(0.7 * RAM),
        "pixType":
        "uint8" if total_dates < 255 else "uint16",
        "out":
        validity_processing
    })
    if not os.path.exists(os.path.join(features_dir, validity_name)):
        validity_app.ExecuteAndWriteOutput()
        if workingDirectory:
            shutil.copy(validity_processing,
                        os.path.join(features_dir, validity_name))
    threshold_raster_out = os.path.join(features_dir,
                                        maskOut_name.replace(".shp", ".tif"))
    threshold_vector_out_tmp = os.path.join(
        features_dir, maskOut_name.replace(".shp", "_TMP.shp"))
    threshold_vector_out = os.path.join(features_dir, maskOut_name)

    input_threshold = validity_processing if os.path.exists(
        validity_processing) else validity_out

    threshold_raster = CreateBandMathApplication({
        "il":
        input_threshold,
        "exp":
        "im1b1>={}?1:0".format(view_threshold),
        "ram":
        str(0.7 * RAM),
        "pixType":
        "uint8",
        "out":
        threshold_raster_out
    })
    threshold_raster.ExecuteAndWriteOutput()
    cmd_poly = f"gdal_polygonize.py -mask {threshold_raster_out} {threshold_raster_out} -f \"ESRI Shapefile\" {threshold_vector_out_tmp} {os.path.splitext(os.path.basename(threshold_vector_out_tmp))[0]} cloud"
    run(cmd_poly)

    erodeShapeFile(threshold_vector_out_tmp, threshold_vector_out, 0.1)
    os.remove(threshold_raster_out)
    removeShape(threshold_vector_out_tmp.replace(".shp", ""),
                [".prj", ".shp", ".dbf", ".shx"])
Exemplo n.º 9
0
    PARSER = argparse.ArgumentParser(description=DESCRIPTION)
    PARSER.add_argument("-config",
                        dest="config",
                        help="configuration file path",
                        default=None,
                        required=True)
    PARSER.add_argument("-output",
                        dest="output",
                        help="output raster",
                        default=None,
                        required=True)
    PARSER.add_argument("-tile",
                        dest="tile_name",
                        help="tile's name",
                        default=None,
                        required=True)
    PARSER.add_argument("-working_dir",
                        dest="working_dir",
                        help="tile's name",
                        default=None,
                        required=True)
    ARGS = PARSER.parse_args()
    # load configuration file
    CFG = SCF.serviceConfigFile(ARGS.pathConf)
    PARAMS = iota2_parameters(ARGS.pathConf)
    SEN_PARAM = PARAMS.get_sensors_parameters(ARGS.tile)
    OUTPUT_PATH = CFG.getParam("chain", "outputPath")

    compute_features(OUTPUT_PATH, SEN_PARAM, ARGS.output, ARGS.tile_name,
                     ARGS.working_dir)
Exemplo n.º 10
0
    def test_train_and_classify(self):
        """test autoContext training
        """
        import re
        from iota2.Common import IOTA2Directory
        from iota2.Common import ServiceConfigFile as SCF
        from iota2.Common.FileUtils import FileSearch_AND
        from iota2.Common.FileUtils import getFieldElement
        from iota2.Segmentation import segmentation
        from iota2.Learning.trainAutoContext import train_autoContext
        from iota2.Classification.ImageClassifier import autoContext_launch_classif
        from iota2.Sensors.Sensors_container import sensors_container
        from iota2.Common.ServiceConfigFile import iota2_parameters
        from iota2.Common.OtbAppBank import CreateBandMathApplication
        from iota2.Tests.UnitTests.TestsUtils import test_raster_unique_value

        # config file
        config_path_test = os.path.join(self.test_working_directory,
                                        "Config_TEST.cfg")
        test_path = self.generate_cfg_file(self.config_test, config_path_test)
        cfg = SCF.serviceConfigFile(config_path_test)
        IOTA2Directory.generate_directories(test_path, check_inputs=False)
        autocontext_working_dir = os.path.join(self.test_working_directory,
                                               "autoContext_tmp")
        slic_working_dir = os.path.join(self.test_working_directory,
                                        "autoContext_tmp")
        iota2_dico = SCF.iota2_parameters(
            config_path_test).get_sensors_parameters(self.tile_name)
        sensors = sensors_container(self.tile_name, None,
                                    self.test_working_directory, **iota2_dico)
        sensors.sensors_preprocess()
        running_parameters = iota2_parameters(config_path_test)
        sensors_parameters = running_parameters.get_sensors_parameters(
            "T31TCJ")
        segmentation.slicSegmentation(self.tile_name,
                                      test_path,
                                      sensors_parameters,
                                      ram=128,
                                      working_dir=slic_working_dir,
                                      force_spw=1)

        slic_seg = FileSearch_AND(
            os.path.join(test_path, "features", self.tile_name, "tmp"), True,
            "SLIC_{}".format(self.tile_name))[0]

        train_auto_data_ref, superpix_data = self.prepare_autoContext_data_ref(
            slic_seg, config_path_test)

        parameter_dict = {
            "model_name": "1",
            "seed": "0",
            "list_learning_samples": [train_auto_data_ref],
            "list_superPixel_samples": [superpix_data],
            "list_tiles": ["T31TCJ"],
            "list_slic": [slic_seg]
        }
        # launch tests

        # training
        e = None
        try:
            train_autoContext(parameter_dict,
                              data_field="code",
                              output_path=test_path,
                              sensors_parameters=sensors_parameters,
                              superpix_data_field="superpix",
                              iterations=3,
                              RAM=128,
                              WORKING_DIR=autocontext_working_dir)
        except Exception as e:
            print(e)

        # Asserts training
        self.assertTrue(e is None, msg="train_autoContext failed")

        models = FileSearch_AND(os.path.join(test_path, "model"), True,
                                "model_it_", ".rf")
        self.assertTrue(len(models) == 4)

        # classification
        tile_raster = FileSearch_AND(self.fake_data_dir, True,
                                     "BINARY_MASK.tif")[0]
        tile_mask = os.path.join(autocontext_working_dir,
                                 "{}_tile_mask.tif".format(self.tile_name))
        CreateBandMathApplication({
            "il": [tile_raster],
            "out": tile_mask,
            "exp": "1"
        }).ExecuteAndWriteOutput()

        labels = getFieldElement(train_auto_data_ref,
                                 driverName="SQLite",
                                 field="code",
                                 mode="unique",
                                 elemType="str")
        parameters_dict = {
            "model_name":
            "1",
            "seed_num":
            0,
            "tile":
            self.tile_name,
            "tile_segmentation":
            slic_seg,
            "tile_mask":
            tile_mask,
            "labels_list":
            labels,
            "model_list":
            sorted(models,
                   key=lambda x: int(re.findall("\d", os.path.basename(x))[0]))
        }

        autoContext_launch_classif(parameters_dict,
                                   cfg.getParam("argTrain", "classifier"),
                                   "T31TCJ",
                                   cfg.getParam("argClassification",
                                                "enable_probability_map"),
                                   cfg.getParam("dimRed", "dimRed"),
                                   "code",
                                   False,
                                   False,
                                   iota2_run_dir=test_path,
                                   sar_optical_post_fusion=False,
                                   nomenclature_path=cfg.getParam(
                                       "chain", "nomenclaturePath"),
                                   sensors_parameters=sensors_parameters,
                                   RAM=128,
                                   WORKING_DIR=autocontext_working_dir)

        # Asserts classifications
        classif = FileSearch_AND(os.path.join(test_path, "classif"), True,
                                 "Classif_T31TCJ_model_1_seed_0.tif")[0]
        confidence = FileSearch_AND(os.path.join(test_path, "classif"), True,
                                    "T31TCJ_model_1_confidence_seed_0.tif")[0]

        classif_unique_0 = test_raster_unique_value(classif, 0)
        confidence_unique_0 = test_raster_unique_value(confidence, 0)
        self.assertTrue(
            classif_unique_0 == False,
            msg=("AutoContext Classifications failed : classification contains"
                 " only 0 values"))
        self.assertTrue(
            confidence_unique_0 == False,
            msg=("AutoContext Classifications failed : confidence contains "
                 "only 0 values"))
Exemplo n.º 11
0
    def prepare_autoContext_data_ref(self, slic_seg, config_path_test):
        """
        """
        from iota2.Common.ServiceConfigFile import iota2_parameters
        from iota2.VectorTools.AddField import addField
        from iota2.Sampling.SuperPixelsSelection import merge_ref_super_pix
        from iota2.Sampling.SplitSamples import split_superpixels_and_reference
        from iota2.Common.FileUtils import FileSearch_AND
        from iota2.Common.OtbAppBank import CreateSampleSelectionApplication
        from iota2.Common.OtbAppBank import CreatePolygonClassStatisticsApplication
        from iota2.Common.OtbAppBank import CreateSampleExtractionApplication
        from iota2.Common.GenerateFeatures import generateFeatures
        from iota2.Common import ServiceConfigFile as SCF

        raster_ref = FileSearch_AND(self.fake_data_dir, True, ".tif")[0]
        CreatePolygonClassStatisticsApplication({
            "in":
            raster_ref,
            "vec":
            self.ref_data,
            "field":
            "CODE",
            "out":
            os.path.join(self.test_working_directory, "stats.xml")
        }).ExecuteAndWriteOutput()
        ref_sampled = os.path.join(
            self.test_working_directory,
            "T31TCJ_samples_region_1_seed_0_selection.sqlite")
        CreateSampleSelectionApplication({
            "in":
            raster_ref,
            "vec":
            self.ref_data,
            "field":
            "CODE",
            "strategy":
            "all",
            "instats":
            os.path.join(self.test_working_directory, "stats.xml"),
            "out":
            ref_sampled
        }).ExecuteAndWriteOutput()

        cfg = SCF.serviceConfigFile(config_path_test)
        params = iota2_parameters(config_path_test)
        sensors_parameters = params.get_sensors_parameters("T31TCJ")
        features, feat_labels, dep = generateFeatures(
            None,
            "T31TCJ",
            sar_optical_post_fusion=False,
            output_path=cfg.getParam("chain", "outputPath"),
            sensors_parameters=sensors_parameters)
        extraction = CreateSampleExtractionApplication({
            "in": features,
            "vec": ref_sampled,
            "field": "code",
            "outfield.list.names": feat_labels,
            "outfield": "list"
        })
        extraction.ExecuteAndWriteOutput()

        addField(ref_sampled,
                 "newregion",
                 valueField="1",
                 valueType=str,
                 driver_name="SQLite")
        os.remove(os.path.join(self.test_working_directory, "stats.xml"))

        merge_ref_super_pix(
            {
                "selection_samples": ref_sampled,
                "SLIC": slic_seg
            }, "code", "superpix", "is_superpix", "newregion")

        learning_vector = os.path.join(
            self.test_working_directory,
            "T31TCJ_region_1_seed0_Samples_learn.sqlite")
        shutil.move(ref_sampled, learning_vector)

        ref, superpix = split_superpixels_and_reference(
            learning_vector, superpix_column="is_superpix")

        return learning_vector, superpix