Exemplo n.º 1
0
 def detectorbase_start(self):
     from iotbx.detectors.noir import NoirImage
     self.detectorbase = NoirImage(self._image_file)
     self.detectorbase.open_file = self.open_file
     self.detectorbase.readHeader()
Exemplo n.º 2
0
class FormatSMVNOIR(FormatSMVRigaku):
    '''A class for reading SMV format ALS 4.2.2 NOIR images, and correctly
  constructing a model for the experiment from this.'''
    @staticmethod
    def understand(image_file):
        '''Check to see if this looks like a ALS 4.2.2 NOIR SMV format image,
    i.e. we can make sense of it. Essentially that will be if it contains
    all of the keys we are looking for.'''

        size, header = FormatSMVRigaku.get_smv_header(image_file)

        wanted_header_items = [
            'DETECTOR_NUMBER',
            'DETECTOR_NAMES',
            'CRYSTAL_GONIO_NUM_VALUES',
            'CRYSTAL_GONIO_NAMES',
            'CRYSTAL_GONIO_UNITS',
            'CRYSTAL_GONIO_VALUES',
            'NOIR1_CREATED',
            'ROTATION',
            'ROTATION_AXIS_NAME',
            'ROTATION_VECTOR',
            'SOURCE_VECTORS',
            'SOURCE_WAVELENGTH',
            'SOURCE_POLARZ',
            'DIM',
            'SIZE1',
            'SIZE2',
        ]

        for header_item in wanted_header_items:
            if not header_item in header:
                return False

        detector_prefix = header['DETECTOR_NAMES'].split()[0].strip()

        more_wanted_header_items = [
            'DETECTOR_DIMENSIONS', 'DETECTOR_SIZE', 'DETECTOR_VECTORS',
            'GONIO_NAMES', 'GONIO_UNITS', 'GONIO_VALUES', 'GONIO_VECTORS',
            'SPATIAL_BEAM_POSITION'
        ]

        for header_item in more_wanted_header_items:
            if not '%s%s' % (detector_prefix, header_item) in header:
                return False

        return True

    def __init__(self, image_file, **kwargs):
        '''Initialise the image structure from the given file, including a
    proper model of the experiment. Easy from Rigaku Saturn images as
    they contain everything pretty much we need...'''

        from dxtbx import IncorrectFormatError
        if not self.understand(image_file):
            raise IncorrectFormatError(self, image_file)

        FormatSMVRigaku.__init__(self, image_file, **kwargs)

        self.detector_class = 'NOIR1'
        self.detector = 'adsc'

    def _start(self):
        FormatSMVRigaku._start(self)

    def detectorbase_start(self):
        from iotbx.detectors.noir import NoirImage
        self.detectorbase = NoirImage(self._image_file)
        self.detectorbase.open_file = self.open_file
        self.detectorbase.readHeader()

    def _goniometer(self):
        '''Initialize the structure for the goniometer - this will need to
    correctly compose the axes given in the image header. In this case
    this is made rather straightforward as the image header has the
    calculated rotation axis stored in it. We could work from the
    rest of the header and construct a goniometer model.'''

        axis = tuple(
            map(float, self._header_dictionary['ROTATION_VECTOR'].split()))

        return self._goniometer_factory.known_axis(axis)

    def _detector(self):
        '''Return a model for the detector, allowing for two-theta offsets
    and the detector position. This will be rather more complex...'''

        detector_name = self._header_dictionary['DETECTOR_NAMES'].split(
        )[0].strip()

        detector_axes = map(
            float, self._header_dictionary['%sDETECTOR_VECTORS' %
                                           detector_name].split())

        detector_fast = matrix.col(tuple(detector_axes[:3]))
        detector_slow = matrix.col(tuple(detector_axes[3:]))

        beam_pixels = map(
            float, self._header_dictionary['%sSPATIAL_BEAM_POSITION' %
                                           detector_name].split()[:2])
        pixel_size = map(
            float, self._header_dictionary['%sSPATIAL_DISTORTION_INFO' %
                                           detector_name].split()[2:])
        image_size = map(
            int, self._header_dictionary['%sDETECTOR_DIMENSIONS' %
                                         detector_name].split())

        detector_origin = - (beam_pixels[0] * pixel_size[0] * detector_fast + \
                             beam_pixels[1] * pixel_size[1] * detector_slow)

        gonio_axes = map(
            float,
            self._header_dictionary['%sGONIO_VECTORS' % detector_name].split())
        gonio_values = map(
            float,
            self._header_dictionary['%sGONIO_VALUES' % detector_name].split())
        gonio_units = self._header_dictionary['%sGONIO_UNITS' %
                                              detector_name].split()
        gonio_num_axes = int(self._header_dictionary['%sGONIO_NUM_VALUES' %
                                                     detector_name])

        rotations = []
        translations = []

        for j, unit in enumerate(gonio_units):
            axis = matrix.col(gonio_axes[3 * j:3 * (j + 1)])
            if unit == 'deg':
                rotations.append(
                    axis.axis_and_angle_as_r3_rotation_matrix(gonio_values[j],
                                                              deg=True))
                translations.append(matrix.col((0.0, 0.0, 0.0)))
            elif unit == 'mm':
                rotations.append(
                    matrix.sqr((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)))
                translations.append(gonio_values[j] * axis)
            else:
                raise RuntimeError('unknown axis unit %s' % unit)

        rotations.reverse()
        translations.reverse()

        for j in range(gonio_num_axes):
            detector_fast = rotations[j] * detector_fast
            detector_slow = rotations[j] * detector_slow
            detector_origin = rotations[j] * detector_origin
            detector_origin = translations[j] + detector_origin

        overload = int(float(self._header_dictionary['SATURATED_VALUE']))
        underload = 0

        return self._detector_factory.complex('CCD', detector_origin.elems,
                                              detector_fast.elems,
                                              detector_slow.elems, pixel_size,
                                              image_size,
                                              (underload, overload))

    def _beam(self):
        '''Return a simple model for the beam.'''

        beam_direction = map(
            float, self._header_dictionary['SOURCE_VECTORS'].split()[:3])

        polarization = map(float,
                           self._header_dictionary['SOURCE_POLARZ'].split())

        p_fraction = polarization[0]
        p_plane = polarization[1:]

        wavelength = float(
            self._header_dictionary['SOURCE_WAVELENGTH'].split()[-1])

        return self._beam_factory.complex(beam_direction, p_fraction, p_plane,
                                          wavelength)

    def _scan(self):
        '''Return the scan information for this image.'''

        rotation = map(float, self._header_dictionary['ROTATION'].split())

        format = self._scan_factory.format('SMV')
        epoch = time.mktime(
            time.strptime(self._header_dictionary['NOIR1_CREATED'],
                          '%m/%d/%y  %H:%M:%S'))

        exposure_time = rotation[3]
        osc_start = rotation[0]
        osc_range = rotation[2]

        return self._scan_factory.single(self._image_file, format,
                                         exposure_time, osc_start, osc_range,
                                         epoch)

    def get_raw_data(self):
        '''Get the pixel intensities (i.e. read the image and return as a
    flex array of integers.)'''

        from boost.python import streambuf
        from dxtbx import read_uint16, read_uint16_bs, is_big_endian
        from scitbx.array_family import flex
        assert (len(self.get_detector()) == 1)
        panel = self.get_detector()[0]
        size = panel.get_image_size()
        f = FormatSMVNOIR.open_file(self._image_file, 'rb')
        f.read(self._header_size)

        if self._header_dictionary['BYTE_ORDER'] == 'big_endian':
            big_endian = True
        else:
            big_endian = False

        if big_endian == is_big_endian():
            raw_data = read_uint16(streambuf(f), int(size[0] * size[1]))
        else:
            raw_data = read_uint16_bs(streambuf(f), int(size[0] * size[1]))

        image_size = panel.get_image_size()
        raw_data.reshape(flex.grid(image_size[1], image_size[0]))

        return raw_data
class FormatSMVNOIR(FormatSMVRigaku):
    """A class for reading SMV format ALS 4.2.2 NOIR images, and correctly
    constructing a model for the experiment from this."""
    @staticmethod
    def understand(image_file):
        """Check to see if this looks like a ALS 4.2.2 NOIR SMV format image,
        i.e. we can make sense of it. Essentially that will be if it contains
        all of the keys we are looking for."""

        size, header = FormatSMVRigaku.get_smv_header(image_file)

        wanted_header_items = [
            "DETECTOR_NUMBER",
            "DETECTOR_NAMES",
            "CRYSTAL_GONIO_NUM_VALUES",
            "CRYSTAL_GONIO_NAMES",
            "CRYSTAL_GONIO_UNITS",
            "CRYSTAL_GONIO_VALUES",
            "NOIR1_CREATED",
            "ROTATION",
            "ROTATION_AXIS_NAME",
            "ROTATION_VECTOR",
            "SOURCE_VECTORS",
            "SOURCE_WAVELENGTH",
            "SOURCE_POLARZ",
            "DIM",
            "SIZE1",
            "SIZE2",
        ]

        if any(item not in header for item in wanted_header_items):
            return False

        detector_prefix = header["DETECTOR_NAMES"].split()[0].strip()

        more_wanted_header_items = [
            "DETECTOR_DIMENSIONS",
            "DETECTOR_SIZE",
            "DETECTOR_VECTORS",
            "GONIO_NAMES",
            "GONIO_UNITS",
            "GONIO_VALUES",
            "GONIO_VECTORS",
            "SPATIAL_BEAM_POSITION",
        ]

        if any("%s%s" % (detector_prefix, item) not in header
               for item in more_wanted_header_items):
            return False

        return True

    def __init__(self, image_file, **kwargs):
        """Initialise the image structure from the given file, including a
        proper model of the experiment. Easy from Rigaku Saturn images as
        they contain everything pretty much we need..."""

        from dxtbx import IncorrectFormatError

        if not self.understand(image_file):
            raise IncorrectFormatError(self, image_file)

        FormatSMVRigaku.__init__(self, image_file, **kwargs)

        self.detector_class = "NOIR1"
        self.detector = "adsc"

    def detectorbase_start(self):
        from iotbx.detectors.noir import NoirImage

        self.detectorbase = NoirImage(self._image_file)
        self.detectorbase.open_file = self.open_file
        self.detectorbase.readHeader()

    def _goniometer(self):
        """Initialize the structure for the goniometer - this will need to
        correctly compose the axes given in the image header. In this case
        this is made rather straightforward as the image header has the
        calculated rotation axis stored in it. We could work from the
        rest of the header and construct a goniometer model."""

        axis = tuple(
            map(float, self._header_dictionary["ROTATION_VECTOR"].split()))

        return self._goniometer_factory.known_axis(axis)

    def get_beam_pixels(self, detector_name):
        return [
            float(bp)
            for bp in self._header_dictionary["%sSPATIAL_BEAM_POSITION" %
                                              detector_name].split()[:2]
        ]

    def _detector(self):
        """Return a model for the detector, allowing for two-theta offsets
        and the detector position. This will be rather more complex..."""

        detector_name = self._header_dictionary["DETECTOR_NAMES"].split(
        )[0].strip()

        detector_axes = self.get_detector_axes(detector_name)
        detector_fast = matrix.col(tuple(detector_axes[:3]))
        detector_slow = matrix.col(tuple(detector_axes[3:]))

        beam_pixels = self.get_beam_pixels(detector_name)
        pixel_size = self.get_pixel_size(detector_name)
        image_size = self.get_image_size(detector_name)

        detector_origin = -(beam_pixels[0] * pixel_size[0] * detector_fast +
                            beam_pixels[1] * pixel_size[1] * detector_slow)

        gonio_axes = self.get_gonio_axes(detector_name)
        gonio_values = self.get_gonio_values(detector_name)
        gonio_units = self._header_dictionary["%sGONIO_UNITS" %
                                              detector_name].split()
        gonio_num_axes = int(self._header_dictionary["%sGONIO_NUM_VALUES" %
                                                     detector_name])

        rotations = []
        translations = []

        for j, unit in enumerate(gonio_units):
            axis = matrix.col(gonio_axes[3 * j:3 * (j + 1)])
            if unit == "deg":
                rotations.append(
                    axis.axis_and_angle_as_r3_rotation_matrix(gonio_values[j],
                                                              deg=True))
                translations.append(matrix.col((0.0, 0.0, 0.0)))
            elif unit == "mm":
                rotations.append(
                    matrix.sqr((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)))
                translations.append(gonio_values[j] * axis)
            else:
                raise RuntimeError("unknown axis unit %s" % unit)

        rotations.reverse()
        translations.reverse()

        for j in range(gonio_num_axes):
            detector_fast = rotations[j] * detector_fast
            detector_slow = rotations[j] * detector_slow
            detector_origin = rotations[j] * detector_origin
            detector_origin = translations[j] + detector_origin

        overload = int(float(self._header_dictionary["SATURATED_VALUE"]))
        underload = 0

        return self._detector_factory.complex(
            "CCD",
            detector_origin.elems,
            detector_fast.elems,
            detector_slow.elems,
            pixel_size,
            image_size,
            (underload, overload),
        )

    def _beam(self):
        """Return a simple model for the beam."""

        beam_direction = self.get_beam_direction()
        p_fraction, p_plane = self.get_beam_polarization()

        wavelength = float(
            self._header_dictionary["SOURCE_WAVELENGTH"].split()[-1])

        return self._beam_factory.complex(beam_direction, p_fraction, p_plane,
                                          wavelength)

    def _scan(self):
        """Return the scan information for this image."""
        epoch = time.strptime(self._header_dictionary["NOIR1_CREATED"],
                              "%m/%d/%y  %H:%M:%S")
        return self._create_single_SVM_scan(epoch)

    def get_raw_data(self):
        """Get the pixel intensities (i.e. read the image and return as a
        flex array of integers.)"""

        assert len(self.get_detector()) == 1
        panel = self.get_detector()[0]
        image_size = panel.get_image_size()
        raw_data = self._get_endianic_raw_data(size=image_size)

        return raw_data
 def detectorbase_start(self):
   from iotbx.detectors.noir import NoirImage
   self.detectorbase = NoirImage(self._image_file)
   self.detectorbase.readHeader()
class FormatSMVNOIR(FormatSMVRigaku):
  '''A class for reading SMV format ALS 4.2.2 NOIR images, and correctly
  constructing a model for the experiment from this.'''

  @staticmethod
  def understand(image_file):
    '''Check to see if this looks like a ALS 4.2.2 NOIR SMV format image,
    i.e. we can make sense of it. Essentially that will be if it contains
    all of the keys we are looking for.'''

    size, header = FormatSMVRigaku.get_smv_header(image_file)

    wanted_header_items = [
        'DETECTOR_NUMBER', 'DETECTOR_NAMES',
        'CRYSTAL_GONIO_NUM_VALUES', 'CRYSTAL_GONIO_NAMES',
        'CRYSTAL_GONIO_UNITS', 'CRYSTAL_GONIO_VALUES',
        'NOIR1_CREATED',
        'ROTATION', 'ROTATION_AXIS_NAME', 'ROTATION_VECTOR',
        'SOURCE_VECTORS', 'SOURCE_WAVELENGTH',
        'SOURCE_POLARZ', 'DIM', 'SIZE1', 'SIZE2',
        ]

    for header_item in wanted_header_items:
      if not header_item in header:
        return False

    detector_prefix = header['DETECTOR_NAMES'].split()[0].strip()

    more_wanted_header_items = [
        'DETECTOR_DIMENSIONS', 'DETECTOR_SIZE', 'DETECTOR_VECTORS',
        'GONIO_NAMES', 'GONIO_UNITS', 'GONIO_VALUES', 'GONIO_VECTORS',
        'SPATIAL_BEAM_POSITION'
        ]

    for header_item in more_wanted_header_items:
      if not '%s%s' % (detector_prefix, header_item) in header:
        return False

    return True

  def __init__(self, image_file):
    '''Initialise the image structure from the given file, including a
    proper model of the experiment. Easy from Rigaku Saturn images as
    they contain everything pretty much we need...'''

    assert(self.understand(image_file))

    FormatSMVRigaku.__init__(self, image_file)

    self.detector_class = 'NOIR1'
    self.detector = 'adsc'

    return

  def _start(self):
    FormatSMVRigaku._start(self)

  def detectorbase_start(self):
    from iotbx.detectors.noir import NoirImage
    self.detectorbase = NoirImage(self._image_file)
    self.detectorbase.readHeader()

  def _goniometer(self):
    '''Initialize the structure for the goniometer - this will need to
    correctly compose the axes given in the image header. In this case
    this is made rather straightforward as the image header has the
    calculated rotation axis stored in it. We could work from the
    rest of the header and construct a goniometer model.'''

    axis = tuple(map(float, self._header_dictionary[
        'ROTATION_VECTOR'].split()))

    return self._goniometer_factory.known_axis(axis)

  def _detector(self):
    '''Return a model for the detector, allowing for two-theta offsets
    and the detector position. This will be rather more complex...'''

    detector_name = self._header_dictionary[
        'DETECTOR_NAMES'].split()[0].strip()

    detector_axes = map(float, self._header_dictionary[
        '%sDETECTOR_VECTORS' % detector_name].split())

    detector_fast = matrix.col(tuple(detector_axes[:3]))
    detector_slow = matrix.col(tuple(detector_axes[3:]))

    beam_pixels = map(float, self._header_dictionary[
        '%sSPATIAL_BEAM_POSITION' % detector_name].split()[:2])
    pixel_size = map(float, self._header_dictionary[
        '%sSPATIAL_DISTORTION_INFO' % detector_name].split()[2:])
    image_size = map(int, self._header_dictionary[
        '%sDETECTOR_DIMENSIONS' % detector_name].split())

    detector_origin = - (beam_pixels[0] * pixel_size[0] * detector_fast + \
                         beam_pixels[1] * pixel_size[1] * detector_slow)

    gonio_axes = map(float, self._header_dictionary[
        '%sGONIO_VECTORS' % detector_name].split())
    gonio_values = map(float, self._header_dictionary[
        '%sGONIO_VALUES' % detector_name].split())
    gonio_units = self._header_dictionary[
        '%sGONIO_UNITS' % detector_name].split()
    gonio_num_axes = int(self._header_dictionary[
        '%sGONIO_NUM_VALUES' % detector_name])

    rotations = []
    translations = []

    for j, unit in enumerate(gonio_units):
      axis = matrix.col(gonio_axes[3 * j:3 * (j + 1)])
      if unit == 'deg':
        rotations.append(axis.axis_and_angle_as_r3_rotation_matrix(
            gonio_values[j], deg = True))
        translations.append(matrix.col((0.0, 0.0, 0.0)))
      elif unit == 'mm':
        rotations.append(matrix.sqr((1.0, 0.0, 0.0,
                                     0.0, 1.0, 0.0,
                                     0.0, 0.0, 1.0)))
        translations.append(gonio_values[j] * axis)
      else:
        raise RuntimeError, 'unknown axis unit %s' % unit

    rotations.reverse()
    translations.reverse()

    for j in range(gonio_num_axes):
      detector_fast = rotations[j] * detector_fast
      detector_slow = rotations[j] * detector_slow
      detector_origin = rotations[j] * detector_origin
      detector_origin = translations[j] + detector_origin

    overload = int(float(self._header_dictionary['SATURATED_VALUE']))
    underload = 0

    return self._detector_factory.complex(
        'CCD', detector_origin.elems, detector_fast.elems,
        detector_slow.elems, pixel_size, image_size, (underload, overload))

  def _beam(self):
    '''Return a simple model for the beam.'''

    beam_direction = map(float, self._header_dictionary[
        'SOURCE_VECTORS'].split()[:3])

    polarization = map(float, self._header_dictionary[
        'SOURCE_POLARZ'].split())

    p_fraction = polarization[0]
    p_plane = polarization[1:]

    wavelength = float(
        self._header_dictionary['SOURCE_WAVELENGTH'].split()[-1])

    return self._beam_factory.complex(
        beam_direction, p_fraction, p_plane, wavelength)

  def _scan(self):
    '''Return the scan information for this image.'''

    rotation = map(float, self._header_dictionary['ROTATION'].split())

    format = self._scan_factory.format('SMV')
    epoch = time.mktime(time.strptime(self._header_dictionary[
        'NOIR1_CREATED'], '%m/%d/%y  %H:%M:%S'))

    exposure_time = rotation[3]
    osc_start = rotation[0]
    osc_range = rotation[2]

    return self._scan_factory.single(
        self._image_file, format, exposure_time,
        osc_start, osc_range, epoch)

  def get_raw_data(self):
    '''Get the pixel intensities (i.e. read the image and return as a
    flex array of integers.)'''

    from boost.python import streambuf
    from dxtbx import read_uint16, read_uint16_bs, is_big_endian
    from scitbx.array_family import flex
    assert(len(self.get_detector()) == 1)
    panel = self.get_detector()[0]
    size = panel.get_image_size()
    f = FormatSMVNOIR.open_file(self._image_file, 'rb')
    f.read(self._header_size)

    if self._header_dictionary['BYTE_ORDER'] == 'big_endian':
      big_endian = True
    else:
      big_endian = False

    if big_endian == is_big_endian():
      raw_data = read_uint16(streambuf(f), int(size[0] * size[1]))
    else:
      raw_data = read_uint16_bs(streambuf(f), int(size[0] * size[1]))

    image_size = panel.get_image_size()
    raw_data.reshape(flex.grid(image_size[1], image_size[0]))

    return raw_data
Exemplo n.º 6
0
 def detectorbase_start(self):
     self.detectorbase = NoirImage(self._image_file)
     self.detectorbase.open_file = self.open_file
     self.detectorbase.readHeader()