Exemplo n.º 1
0
                        True,
                        M,
                        bh * 1,
                        pad_zone=pad_zone,
                        heaviside=MOL.step,
                        qfs_tolerance=qfs_tolerance,
                        coordinate_tolerance=coordinate_tolerance,
                        coordinate_scheme=coordinate_scheme)
ebdyc = EmbeddedBoundaryCollection([
    ebdy,
])
# register the grid
print('\nRegistering the grid')
ebdyc.register_grid(grid, verbose=verbose)
# give ebdyc a bumpy function
ebdyc.ready_bump(MOL.bump, (1.2 - ebdy.radial_width, 1.2 - ebdy.radial_width),
                 ebdyc[0].radial_width)

################################################################################
# Get solution, forces, BCs

k = 8 * np.pi / 3

solution_func = lambda x, y: -np.cos(x) * np.exp(np.sin(x)) * np.sin(y)
force_func = lambda x, y: (2.0 * np.cos(x) + 3.0 * np.cos(x) * np.sin(x) - np.
                           cos(x)**3) * np.exp(np.sin(x)) * np.sin(y)

# solution_func = lambda x, y: np.exp(np.sin(k*x))*np.sin(k*y)
# force_func = lambda x, y: k**2*np.exp(np.sin(k*x))*np.sin(k*y)*(np.cos(k*x)**2-np.sin(k*x)-1.0)
f = force_func(ebdyc.grid.xg, ebdyc.grid.yg) * ebdyc.phys
frs = [force_func(ebdy.radial_x, ebdy.radial_y) for ebdy in ebdyc]
ua = solution_func(ebdyc.grid.xg, ebdyc.grid.yg) * ebdyc.phys
Exemplo n.º 2
0
ebdy = EmbeddedBoundary(bdy,
                        True,
                        M,
                        bh / grid_upsample,
                        pad_zone=0,
                        heaviside=MOL.step,
                        qfs_tolerance=qfs_tolerance,
                        coordinate_tolerance=coordinate_tolerance,
                        coordinate_scheme=coordinate_scheme)
ebdyc = EmbeddedBoundaryCollection([
    ebdy,
])
grid = ebdyc.generate_grid(bh / grid_upsample)
ebdyc.register_grid(grid, verbose=verbose)
ebdyc.ready_bump(MOL.bump, (grid.x_bounds[1] - ebdy.radial_width,
                            grid.y_bounds[1] - ebdy.radial_width),
                 ebdyc[0].radial_width)
# register the grid
print('\nRegistering the grid')
ebdyc.register_grid(grid, verbose=verbose)

################################################################################
# Get solution, forces, BCs

if problem == 'easy':
    solution_func = lambda x, y: -np.cos(x) * np.exp(np.sin(x)) * np.sin(y)
    force_func = lambda x, y: (2.0 * np.cos(x) + 3.0 * np.cos(x) * np.sin(x) -
                               np.cos(x)**3) * np.exp(np.sin(x)) * np.sin(y)
else:
    k = 10 * np.pi / 3
    solution_func = lambda x, y: np.exp(np.sin(k * x)) * np.sin(k * y)
Exemplo n.º 3
0
            ng,
            x_endpoints=[True, False],
            y_endpoints=[True, False])
# construct embedded boundary
bdys = [bdy1, bdy2, bdy3]
ebdys = [
    EmbeddedBoundary(bdy, bdy is bdy1, M, bh, pad_zone, MOL.step)
    for bdy in bdys
]
ebdyc = EmbeddedBoundaryCollection(ebdys)
# register the grid
print('\nRegistering the grid')
ebdyc.register_grid(grid, verbose=verbose)
# give ebdyc a bumpy function
ebdyc.ready_bump(MOL.bump,
                 (3.5 - ebdys[0].radial_width, 3.5 - ebdys[0].radial_width),
                 ebdys[0].radial_width)

################################################################################
# Extract radial information from ebdy and construct annular solver

# Testing the radial Stokes solver
print('   Testing Radial Stokes Solver')
a = 8.0
b = 7.0
p_a = 3.0
p_b = 1.0
sin = np.sin
cos = np.cos
esin = lambda x: np.exp(sin(x))
psix = lambda x, y: esin(a * x) * cos(b * y)
Exemplo n.º 4
0
bdys = [bdy1, bdy2, bdy3]
ebdys = [
    EmbeddedBoundary(bdy,
                     bdy is bdy1,
                     M,
                     bh,
                     pad_zone=pad_zone,
                     heaviside=MOL.step) for bdy in bdys
]
ebdyc = EmbeddedBoundaryCollection(ebdys)
# register the grid
print('\nRegistering the grid')
ebdyc.register_grid(grid, verbose=verbose)
# give ebdyc a bumpy function
ebdyc.ready_bump(MOL.bump,
                 (2.6 - ebdys[0].radial_width, 2.6 - ebdys[0].radial_width),
                 ebdys[0].radial_width)

################################################################################
# Extract radial information from ebdy and construct annular solver

# Testing the radial Stokes solver
print('   Testing Radial Stokes Solver')
a = 8.0
b = 7.0
p_a = 2.0
p_b = 1.0
sin = np.sin
cos = np.cos
esin = lambda x: np.exp(sin(x))
psix = lambda x, y: esin(a * x) * cos(b * y)
Exemplo n.º 5
0
                        pad_zone=pad_zone,
                        heaviside=MOL.step,
                        qfs_tolerance=1e-14,
                        qfs_fsuf=2)
ebdys = [
    ebdy,
]
ebdyc = EmbeddedBoundaryCollection([
    ebdy,
])
# register the grid
print('\nRegistering the grid')
ebdyc.register_grid(grid)
# give ebdyc a bumpy function
ebdyc.ready_bump(
    MOL.bump, (np.pi / 2 - ebdy.radial_width, np.pi / 2 - ebdy.radial_width),
    ebdyc[0].radial_width)

################################################################################
# Extract radial information from ebdy and construct annular solver

# Testing the radial Stokes solver
print('   Testing Radial Stokes Solver')
a = 3.0
b = 2.0
p_a = 2.0
p_b = 1.0
sin = np.sin
cos = np.cos
esin = lambda x: np.exp(sin(x))
psix = lambda x, y: esin(a * x) * cos(b * y)