Exemplo n.º 1
0
def drop_failed_sweeps(
        dataset: EphysDataSet,
        stimulus_ontology: Optional[StimulusOntology] = None,
        qc_criteria: Optional[Dict] = None
) -> List[Dict]:
    """A convenience which extracts and QCs sweeps in preparation for dataset
    feature extraction. This function:
    1. extracts sweep qc features
    2. removes sweeps tagged with failure messages
    3. sets sweep states based on qc results

    Parameters
    ----------
    dataset : dataset from which to draw sweeps

    Returns
    -------
    sweep_features : a list of dictionaries, each describing a sweep
    """
    if stimulus_ontology is None:
        stimulus_ontology = StimulusOntology.default()
    if qc_criteria is None:
        qc_criteria = qcp.load_default_qc_criteria()

    sweep_features = sweep_qc_features(dataset)
    sweep_props.drop_tagged_sweeps(sweep_features)
    sweep_props.remove_sweep_feature("tags", sweep_features)
    sweep_states = qcp.qc_sweeps(
        stimulus_ontology, sweep_features, qc_criteria
    )
    sweep_props.assign_sweep_states(sweep_states, sweep_features)

    dataset.sweep_info = sweep_features
Exemplo n.º 2
0
def main():
    """
    Usage:
    > python generate_fx_input.py --specimen_id SPECIMEN_ID --cell_dir CELL_DIR
    > python generate_fx_input.py --input_nwb_file INPUT_NWB_FILE --cell_dir CELL_DIR

    """

    kwargs = parse_args()
    se_input = generate_se_input(**kwargs)
    cell_dir = kwargs["cell_dir"]
    lu.configure_logger(cell_dir)

    if not os.path.exists(cell_dir):
        os.makedirs(cell_dir)

    ju.write(os.path.join(cell_dir, 'se_input.json'), se_input)

    se_output = run_sweep_extraction(
        se_input["input_nwb_file"], se_input.get("input_h5_file", None),
        se_input.get("stimulus_ontology_file", None))

    ju.write(os.path.join(cell_dir, 'se_output.json'), se_output)

    sp.drop_tagged_sweeps(se_output["sweep_features"])

    qc_input = generate_qc_input(se_input, se_output)
    ju.write(os.path.join(cell_dir, 'qc_input.json'), qc_input)

    qc_output = run_qc(qc_input.get("stimulus_ontology_file",
                                    None), qc_input["cell_features"],
                       qc_input["sweep_features"], qc_input["qc_criteria"])
    ju.write(os.path.join(cell_dir, 'qc_output.json'), qc_output)

    if kwargs["specimen_id"]:
        manual_sweep_states = lq.get_sweep_states(kwargs["specimen_id"])
    elif kwargs["input_nwb_file"]:
        manual_sweep_states = []

    sp.override_auto_sweep_states(manual_sweep_states,
                                  qc_output["sweep_states"])
    sp.assign_sweep_states(qc_output["sweep_states"],
                           se_output["sweep_features"])

    fx_input = generate_fx_input(se_input,
                                 se_output,
                                 cell_dir,
                                 plot_figures=True)

    ju.write(os.path.join(cell_dir, 'fx_input.json'), fx_input)
Exemplo n.º 3
0
def run_pipeline(input_nwb_file,
                 output_nwb_file,
                 stimulus_ontology_file,
                 qc_fig_dir,
                 qc_criteria,
                 manual_sweep_states,
                 write_spikes=True,
                 update_ontology=True):

    se_output = run_sweep_extraction(input_nwb_file,
                                     stimulus_ontology_file,
                                     update_ontology=update_ontology)

    sweep_props.drop_tagged_sweeps(se_output["sweep_features"])
    sweep_props.remove_sweep_feature("tags", se_output["sweep_features"])

    qc_output = run_qc(stimulus_ontology_file, se_output["cell_features"],
                       se_output["sweep_features"], qc_criteria)

    sweep_props.override_auto_sweep_states(manual_sweep_states,
                                           qc_output["sweep_states"])
    sweep_props.assign_sweep_states(qc_output["sweep_states"],
                                    se_output["sweep_features"])

    fx_output = run_feature_extraction(
        input_nwb_file,
        stimulus_ontology_file,
        output_nwb_file,
        qc_fig_dir,
        se_output['sweep_features'],
        se_output['cell_features'],
        write_spikes,
    )

    log_pretty_header("Analysis completed!", level=1)

    return {
        "sweep_extraction": se_output,
        "qc": qc_output,
        "feature_extraction": fx_output
    }
Exemplo n.º 4
0
def run_pipeline(input_nwb_file, input_h5_file, output_nwb_file,
                 stimulus_ontology_file, qc_fig_dir, qc_criteria,
                 manual_sweep_states):

    se_output = run_sweep_extraction(input_nwb_file, input_h5_file,
                                     stimulus_ontology_file)

    sp.drop_tagged_sweeps(se_output["sweep_features"])
    sp.remove_sweep_feature("tags", se_output["sweep_features"])

    qc_output = run_qc(stimulus_ontology_file, se_output["cell_features"],
                       se_output["sweep_features"], qc_criteria)

    if qc_output["cell_state"]["failed_qc"]:
        logging.warning("Failed QC. No ephys features extracted.")

        return dict(
            sweep_extraction=se_output,
            qc=qc_output,
        )

    sp.override_auto_sweep_states(manual_sweep_states,
                                  qc_output["sweep_states"])
    sp.assign_sweep_states(qc_output["sweep_states"],
                           se_output["sweep_features"])

    fx_output = run_feature_extraction(
        input_nwb_file,
        stimulus_ontology_file,
        output_nwb_file,
        qc_fig_dir,
        se_output['sweep_features'],
        se_output['cell_features'],
    )

    return dict(sweep_extraction=se_output,
                qc=qc_output,
                feature_extraction=fx_output)
Exemplo n.º 5
0
def qc_summary(sweep_features, sweep_states, cell_features, cell_state):
    """
    Output QC summary

    Parameters
    ----------
    sweep_features: list of dicts
    sweep_states: list of dict
    cell_features: list of dicts
    cell_state: dict

    Returns
    -------

    """
    lu.log_pretty_header("QC Summary:", level=2)

    logging.info("Cell State:")
    for k, v in cell_state.items():
        logging.info("%s:%s" % (k, v))

    logging.info("Sweep States:")

    sp.assign_sweep_states(sweep_states, sweep_features)
    sweep_table = pd.DataFrame(sweep_features)

    if sweep_features:
        for stimulus_name, sg_table in sweep_table.groupby("stimulus_name"):
            passed_sweep_numbers = sg_table[
                sg_table.passed == True].sweep_number.sort_values().values
            failed_sweep_numbers = sg_table[
                sg_table.passed == False].sweep_number.sort_values().values

            logging.info("{} sweeps passed: {}, failed {}".format(
                stimulus_name, passed_sweep_numbers, failed_sweep_numbers))
    else:
        logging.warning("No current clamp sweeps available for QC")
Exemplo n.º 6
0
 def update_sweep_states(self):
     manual_sweep_states = self.get_non_default_manual_sweep_states()
     sweep_states = copy.deepcopy(self.sweep_states)
     sweep_props.override_auto_sweep_states(manual_sweep_states, sweep_states)
     sweep_props.assign_sweep_states(sweep_states, self.sweep_features)