Exemplo n.º 1
0
    def test_simple_axis1(self):
        a = np.arange(12).reshape(3, 4)
        r = iintrp.Linear1dExtrapolator(interp1d(np.arange(4), a, axis=1))

        # check non-extrapolation given the Extrapolator object
        np.testing.assert_array_equal(r(0), np.array([0., 4., 8.]))

        # check the result's shape in a 1d array (of len 0 & 1)
        np.testing.assert_array_equal(r(np.array(0)), np.array([0., 4., 8.]))
        np.testing.assert_array_equal(r(np.array([0])),
                                      np.array([[0.], [4.], [8.]]))

        # check extrapolation below the minimum value (and check the equivalent 0d & 1d arrays)
        np.testing.assert_array_equal(r(-1), np.array([-1., 3., 7.]))
        np.testing.assert_array_equal(r(np.array(-1)), np.array([-1., 3., 7.]))
        np.testing.assert_array_equal(r(np.array([-1])),
                                      np.array([[-1.], [3.], [7.]]))

        # check extrapolation above the maximum value
        np.testing.assert_array_equal(r(3), np.array([3., 7., 11.]))
        np.testing.assert_array_equal(r(2.5), np.array([2.5, 6.5, 10.5]))

        # 2 Non-extrapolation point
        np.testing.assert_array_equal(
            r(np.array([1.5, 2])), np.array([[1.5, 2.], [5.5, 6.], [9.5,
                                                                    10.]]))

        # 1 Non-extrapolation point & 1 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([1.5, 5])), np.array([[1.5, 5.], [5.5, 9.], [9.5,
                                                                    13.]]))

        # 2 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([4.5, 5])), np.array([[4.5, 5.], [8.5, 9.], [12.5,
                                                                    13.]]))

        # 1 lower value extrapolation & 1 Non-extrapolation point
        np.testing.assert_array_equal(
            r(np.array([-0.5, 1.5])),
            np.array([[-0.5, 1.5], [3.5, 5.5], [7.5, 9.5]]))

        # 2 lower value extrapolation
        np.testing.assert_array_equal(
            r(np.array([-1.5, -1])),
            np.array([[-1.5, -1.], [2.5, 3.], [6.5, 7.]]))

        # 2 lower value extrapolation, 2 Non-extrapolation point & 2 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([-1.5, -1, 1.5, 2, 4.5, 5])),
            np.array([[-1.5, -1., 1.5, 2., 4.5, 5.],
                      [2.5, 3., 5.5, 6., 8.5, 9.],
                      [6.5, 7., 9.5, 10., 12.5, 13.]]))
Exemplo n.º 2
0
 def test_variable_gradient(self):
     a = np.array([[2, 4, 8], [0, 5, 11]])
     r = iintrp.Linear1dExtrapolator(interp1d(np.arange(2), a, axis=0))
     
     np.testing.assert_array_equal(r(0), np.array([ 2.,  4.,  8.]))
     np.testing.assert_array_equal(r(-1), np.array([ 4.,  3.,  5.]))
     np.testing.assert_array_equal(r(3), np.array([ -4.,   7.,  17.]))        
     np.testing.assert_array_equal(r(2.5), np.array([ -3.,   6.5,  15.5]))
     
     np.testing.assert_array_equal(r(np.array([1.5, 2])), np.array([[ -1.,   5.5,  12.5],
                                                                    [ -2.,   6.,  14. ]]))
 
     np.testing.assert_array_equal(r(np.array([-1.5, 3.5])), np.array([[  5.,   2.5,   3.5],
                                                                       [ -5.,   7.5,  18.5]]))
Exemplo n.º 3
0
    def test_simple_axis0(self):
        a = np.arange(12.).reshape(3, 4)
        r = iintrp.Linear1dExtrapolator(interp1d(np.arange(3), a, axis=0))

        np.testing.assert_array_equal(r(0), np.array([0., 1., 2., 3.]))
        np.testing.assert_array_equal(r(-1), np.array([-4., -3., -2., -1.]))
        np.testing.assert_array_equal(r(3), np.array([12., 13., 14., 15.]))
        np.testing.assert_array_equal(r(2.5), np.array([10., 11., 12., 13.]))

        # 2 Non-extrapolation point
        np.testing.assert_array_equal(
            r(np.array([1.5, 2])),
            np.array([[6., 7., 8., 9.], [8., 9., 10., 11.]]))

        # 1 Non-extrapolation point & 1 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([1.5, 3])),
            np.array([[6., 7., 8., 9.], [12., 13., 14., 15.]]))

        # 2 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([2.5, 3])),
            np.array([[10., 11., 12., 13.], [12., 13., 14., 15.]]))

        # 1 lower value extrapolation & 1 Non-extrapolation point
        np.testing.assert_array_equal(
            r(np.array([-1, 1.5])),
            np.array([[-4., -3., -2., -1.], [6., 7., 8., 9.]]))

        # 2 lower value extrapolation
        np.testing.assert_array_equal(
            r(np.array([-1.5, -1])),
            np.array([[-6., -5., -4., -3.], [-4., -3., -2., -1.]]))

        # 2 lower value extrapolation, 2 Non-extrapolation point & 2 upper value extrapolation
        np.testing.assert_array_equal(
            r(np.array([-1.5, -1, 1, 1.5, 2.5, 3])),
            np.array([[-6., -5., -4., -3.], [-4., -3., -2., -1.],
                      [4., 5., 6., 7.], [6., 7., 8., 9.], [10., 11., 12., 13.],
                      [12., 13., 14., 15.]]))
Exemplo n.º 4
0
    def test_simple_3d_axis1(self):
        a = np.arange(24.).reshape(3, 4, 2)
        r = iintrp.Linear1dExtrapolator(interp1d(np.arange(4.), a, axis=1))
        
#       a:
#        [[[ 0  1]
#          [ 2  3]
#          [ 4  5]
#          [ 6  7]]
#        
#         [[ 8  9]
#          [10 11]
#          [12 13]
#          [14 15]]
#        
#         [[16 17]
#          [18 19]
#          [20 21]
#          [22 23]]
#         ] 

        np.testing.assert_array_equal(r(0), np.array([[  0.,   1.],
                                                      [  8.,   9.],
                                                      [ 16.,  17.]]))
        
        np.testing.assert_array_equal(r(1), np.array([[  2.,   3.],
                                                      [ 10.,  11.],
                                                      [ 18.,  19.]]))
        
        np.testing.assert_array_equal(r(-1), np.array([[ -2.,  -1.],
                                                       [  6.,   7.],
                                                       [ 14.,  15.]]))
        
        np.testing.assert_array_equal(r(4), np.array([[  8.,   9.],
                                                      [ 16.,  17.],
                                                      [ 24.,  25.]]))

        np.testing.assert_array_equal(r(0.25), np.array([[  0.5,   1.5],
                                                         [  8.5,   9.5],
                                                         [ 16.5,  17.5]]))
        
        np.testing.assert_array_equal(r(-0.25), np.array([[ -0.5,   0.5],
                                                          [  7.5,   8.5],
                                                          [ 15.5,  16.5]]))
        
        np.testing.assert_array_equal(r(4.25), np.array([[  8.5,   9.5],
                                                         [ 16.5,  17.5],
                                                         [ 24.5,  25.5]]))
        
        np.testing.assert_array_equal(r(np.array([0.5, 1])), np.array([[[  1.,   2.], [  2.,   3.]],
                                                                       [[  9.,  10.], [ 10.,  11.]],
                                                                       [[ 17.,  18.], [ 18.,  19.]]]))
        
        np.testing.assert_array_equal(r(np.array([0.5, 4])), np.array([[[  1.,   2.], [  8.,   9.]],
                                                                       [[  9.,  10.], [ 16.,  17.]],
                                                                       [[ 17.,  18.], [ 24.,  25.]]]))

        np.testing.assert_array_equal(r(np.array([-0.5, 0.5])), np.array([[[ -1.,   0.], [  1.,   2.]],
                                                                          [[  7.,   8.], [  9.,  10.]],
                                                                          [[ 15.,  16.], [ 17.,  18.]]]))

        np.testing.assert_array_equal(r(np.array([-1.5, -1, 0.5, 1, 4.5, 5])), 
                                         np.array([[[ -3.,  -2.], [ -2.,  -1.], [  1.,   2.], [  2.,   3.], [  9.,  10.], [ 10.,  11.]],
                                                   [[  5.,   6.], [  6.,   7.], [  9.,  10.], [ 10.,  11.], [ 17.,  18.], [ 18.,  19.]],
                                                   [[ 13.,  14.], [ 14.,  15.], [ 17.,  18.], [ 18.,  19.], [ 25.,  26.], [ 26.,  27.]]]))