Exemplo n.º 1
0
 def test_scatter_longitude(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     iplt.scatter(self.lat_lon_cube,
                  self.lat_lon_cube.coord('longitude'), axes=ax)
     plt.close(fig)
Exemplo n.º 2
0
def main():
    # Enable a future option, to ensure that the netcdf load works the same way
    # as in future Iris versions.
    iris.FUTURE.netcdf_promote = True

    # Load the gridded temperature and salinity data.
    fname = iris.sample_data_path('atlantic_profiles.nc')
    cubes = iris.load(fname)
    theta, = cubes.extract('sea_water_potential_temperature')
    salinity, = cubes.extract('sea_water_practical_salinity')

    # Extract profiles of temperature and salinity from a particular point in
    # the southern portion of the domain, and limit the depth of the profile
    # to 1000m.
    lon_cons = iris.Constraint(longitude=330.5)
    lat_cons = iris.Constraint(latitude=lambda l: -10 < l < -9)
    depth_cons = iris.Constraint(depth=lambda d: d <= 1000)
    theta_1000m = theta.extract(depth_cons & lon_cons & lat_cons)
    salinity_1000m = salinity.extract(depth_cons & lon_cons & lat_cons)

    # Plot these profiles on the same set of axes. In each case we call plot
    # with two arguments, the cube followed by the depth coordinate. Putting
    # them in this order places the depth coordinate on the y-axis.
    # The first plot is in the default axes. We'll use the same color for the
    # curve and its axes/tick labels.
    plt.figure(figsize=(5, 6))
    temperature_color = (.3, .4, .5)
    ax1 = plt.gca()
    iplt.plot(theta_1000m, theta_1000m.coord('depth'), linewidth=2,
              color=temperature_color, alpha=.75)
    ax1.set_xlabel('Potential Temperature / K', color=temperature_color)
    ax1.set_ylabel('Depth / m')
    for ticklabel in ax1.get_xticklabels():
        ticklabel.set_color(temperature_color)
    # To plot salinity in the same axes we use twiny(). We'll use a different
    # color to identify salinity.
    salinity_color = (.6, .1, .15)
    ax2 = plt.gca().twiny()
    iplt.plot(salinity_1000m, salinity_1000m.coord('depth'), linewidth=2,
              color=salinity_color, alpha=.75)
    ax2.set_xlabel('Salinity / PSU', color=salinity_color)
    for ticklabel in ax2.get_xticklabels():
        ticklabel.set_color(salinity_color)
    plt.tight_layout()
    iplt.show()

    # Now plot a T-S diagram using scatter. We'll use all the profiles here,
    # and each point will be coloured according to its depth.
    plt.figure(figsize=(6, 6))
    depth_values = theta.coord('depth').points
    for s, t in iris.iterate.izip(salinity, theta, coords='depth'):
        iplt.scatter(s, t, c=depth_values, marker='+', cmap='RdYlBu_r')
    ax = plt.gca()
    ax.set_xlabel('Salinity / PSU')
    ax.set_ylabel('Potential Temperature / K')
    cb = plt.colorbar(orientation='horizontal')
    cb.set_label('Depth / m')
    plt.tight_layout()
    iplt.show()
Exemplo n.º 3
0
 def test_scatter_longitude(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     iplt.scatter(self.lat_lon_cube,
                  self.lat_lon_cube.coord('longitude'),
                  axes=ax)
     plt.close(fig)
Exemplo n.º 4
0
 def test_yaxis_labels_with_axes(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     ax.set_ylim(0, 3)
     iplt.scatter(self.cube, self.cube.coord('str_coord'), axes=ax)
     plt.close(fig)
     self.assertPointsTickLabels('yaxis', ax)
Exemplo n.º 5
0
 def test_yaxis_labels_with_axes(self):
     import matplotlib.pyplot as plt
     fig = plt.figure()
     ax = fig.add_subplot(111)
     ax.set_ylim(0, 3)
     iplt.scatter(self.cube, self.cube.coord('str_coord'), axes=ax)
     plt.close(fig)
     self.assertPointsTickLabels('yaxis', ax)
Exemplo n.º 6
0
 def test_scatter_with_c_kwarg_specified_mappable(self):
     mappable_initial = scatter(self.traj_lon, self.traj_lat,
                                c=self.traj_lon.points)
     mappable = scatter(self.traj_lon, self.traj_lat,
                        c=self.traj_lon.points,
                        cmap='cool')
     cbar = plt.colorbar(mappable_initial)
     self.assertIs(cbar.mappable, mappable_initial)
Exemplo n.º 7
0
 def test_scatter_with_c_kwarg_specified_mappable(self):
     mappable_initial = scatter(self.traj_lon, self.traj_lat,
                                c=self.traj_lon.points)
     mappable = scatter(self.traj_lon, self.traj_lat,
                        c=self.traj_lon.points,
                        cmap='cool')
     cbar = plt.colorbar(mappable_initial)
     self.assertIs(cbar.mappable, mappable_initial)
Exemplo n.º 8
0
def scatter(x, y, *args, **kwargs):
    """
    Draws a labelled scatter plot based on the given cubes or
    coordinates.

    See :func:`iris.plot.scatter` for details of valid arguments and
    keyword arguments.

    """
    result = iplt.scatter(x, y, *args, **kwargs)
    _label_1d_plot(x, y)
    return result
Exemplo n.º 9
0
def main():

    # Load the gridded temperature and salinity data.
    fname = iris.sample_data_path('atlantic_profiles.nc')
    cubes = iris.load(fname)
    theta, = cubes.extract('sea_water_potential_temperature')
    salinity, = cubes.extract('sea_water_practical_salinity')

    # Extract profiles of temperature and salinity from a particular point in
    # the southern portion of the domain, and limit the depth of the profile
    # to 1000m.
    lon_cons = iris.Constraint(longitude=330.5)
    lat_cons = iris.Constraint(latitude=lambda l: -10 < l < -9)
    depth_cons = iris.Constraint(depth=lambda d: d <= 1000)
    theta_1000m = theta.extract(depth_cons & lon_cons & lat_cons)
    salinity_1000m = salinity.extract(depth_cons & lon_cons & lat_cons)

    # Plot these profiles on the same set of axes. In each case we call plot
    # with two arguments, the cube followed by the depth coordinate. Putting
    # them in this order places the depth coordinate on the y-axis.
    # The first plot is in the default axes. We'll use the same color for the
    # curve and its axes/tick labels.
    fig = plt.figure(figsize=(5, 6))
    temperature_color = (.3, .4, .5)
    ax1 = plt.gca()
    iplt.plot(theta_1000m,
              theta_1000m.coord('depth'),
              linewidth=2,
              color=temperature_color,
              alpha=.75)
    ax1.set_xlabel('Potential Temperature / K', color=temperature_color)
    ax1.set_ylabel('Depth / m')
    for ticklabel in ax1.get_xticklabels():
        ticklabel.set_color(temperature_color)
    # To plot salinity in the same axes we use twiny(). We'll use a different
    # color to identify salinity.
    salinity_color = (.6, .1, .15)
    ax2 = plt.gca().twiny()
    iplt.plot(salinity_1000m,
              salinity_1000m.coord('depth'),
              linewidth=2,
              color=salinity_color,
              alpha=.75)
    ax2.set_xlabel('Salinity / PSU', color=salinity_color)
    for ticklabel in ax2.get_xticklabels():
        ticklabel.set_color(salinity_color)
    plt.tight_layout()
    iplt.show()

    # Now plot a T-S diagram using scatter. We'll use all the profiles here,
    # and each point will be coloured according to its depth.
    plt.figure(figsize=(6, 6))
    depth_values = theta.coord('depth').points
    for s, t in iris.iterate.izip(salinity, theta, coords='depth'):
        iplt.scatter(s, t, c=depth_values, marker='+', cmap='RdYlBu_r')
    ax = plt.gca()
    ax.set_xlabel('Salinity / PSU')
    ax.set_ylabel('Potential Temperature / K')
    cb = plt.colorbar(orientation='horizontal')
    cb.set_label('Depth / m')
    plt.tight_layout()
    iplt.show()
Exemplo n.º 10
0
 def test_yaxis_labels(self):
     iplt.scatter(self.cube, self.cube.coord('str_coord'))
     self.assertBoundsTickLabels('yaxis')
Exemplo n.º 11
0
 def test_scatter_with_c_kwarg(self):
     mappable = scatter(self.traj_lon, self.traj_lat, c=self.traj_lon.points)
     cbar = plt.colorbar()
     self.assertIs(cbar.mappable, mappable)
Exemplo n.º 12
0
def main():
    # Load the gridded temperature and salinity data.
    fname = iris.sample_data_path("atlantic_profiles.nc")
    cubes = iris.load(fname)
    (theta, ) = cubes.extract("sea_water_potential_temperature")
    (salinity, ) = cubes.extract("sea_water_practical_salinity")

    # Extract profiles of temperature and salinity from a particular point in
    # the southern portion of the domain, and limit the depth of the profile
    # to 1000m.
    lon_cons = iris.Constraint(longitude=330.5)
    lat_cons = iris.Constraint(latitude=lambda l: -10 < l < -9)
    depth_cons = iris.Constraint(depth=lambda d: d <= 1000)
    theta_1000m = theta.extract(depth_cons & lon_cons & lat_cons)
    salinity_1000m = salinity.extract(depth_cons & lon_cons & lat_cons)

    # Plot these profiles on the same set of axes. Depth is automatically
    # recognised as a vertical coordinate and placed on the y-axis.
    # The first plot is in the default axes. We'll use the same color for the
    # curve and its axes/tick labels.
    plt.figure(figsize=(5, 6))
    temperature_color = (0.3, 0.4, 0.5)
    ax1 = plt.gca()
    iplt.plot(
        theta_1000m,
        linewidth=2,
        color=temperature_color,
        alpha=0.75,
    )
    ax1.set_xlabel("Potential Temperature / K", color=temperature_color)
    ax1.set_ylabel("Depth / m")
    for ticklabel in ax1.get_xticklabels():
        ticklabel.set_color(temperature_color)

    # To plot salinity in the same axes we use twiny(). We'll use a different
    # color to identify salinity.
    salinity_color = (0.6, 0.1, 0.15)
    ax2 = plt.gca().twiny()
    iplt.plot(
        salinity_1000m,
        linewidth=2,
        color=salinity_color,
        alpha=0.75,
    )
    ax2.set_xlabel("Salinity / PSU", color=salinity_color)
    for ticklabel in ax2.get_xticklabels():
        ticklabel.set_color(salinity_color)
    plt.tight_layout()
    iplt.show()

    # Now plot a T-S diagram using scatter. We'll use all the profiles here,
    # and each point will be coloured according to its depth.
    plt.figure(figsize=(6, 6))
    depth_values = theta.coord("depth").points
    for s, t in iris.iterate.izip(salinity, theta, coords="depth"):
        iplt.scatter(s, t, c=depth_values, marker="+", cmap="RdYlBu_r")
    ax = plt.gca()
    ax.set_xlabel("Salinity / PSU")
    ax.set_ylabel("Potential Temperature / K")
    cb = plt.colorbar(orientation="horizontal")
    cb.set_label("Depth / m")
    plt.tight_layout()
    iplt.show()
Exemplo n.º 13
0
    def plot(self):
        """
        Produce trajectory plot.

        Returns fig object for further plotting if needed.
        """

        if not self.lines:
            raise ValueError("TrajectoryPlot: no lines have been added")

        if self.fig is None:
            if self.rsmc:
                self.fig = plt.figure(figsize=[12, 6])
                ax = plt.subplot2grid(
                    (3, 3), (0, 0),
                    rowspan=2,
                    colspan=2,
                    projection=ccrs.PlateCarree(central_longitude=self.clon))
            elif self.annote:
                self.fig = plt.figure(figsize=[12, 6])
                ax = plt.subplot2grid(
                    (3, 3), (0, 0),
                    rowspan=2,
                    colspan=2,
                    projection=ccrs.PlateCarree(central_longitude=self.clon))
            else:
                self.fig = plt.figure(figsize=[7, 9])
                ax = plt.subplot2grid(
                    (3, 1), (0, 0),
                    rowspan=2,
                    projection=ccrs.PlateCarree(central_longitude=self.clon))
        ax = plt.gca()

        for line in self.lines:

            add_settings = {}
            if 'add_settings' in line:
                add_settings = line['add_settings']

            style = {
                'label': line['label'],
                'color': line['colour'],
                'linestyle': line['linestyle'],
                'linewidth': line['linewidth'],
                'marker': line['marker']
            }
            style2 = style.copy()
            style2.update(add_settings)

            iplt.plot(line['x'], line['y'], **style2)

            # Add a black square at the trajectory start point
            iplt.scatter(line['x'][0], line['y'][0], color='k', marker='s')

        #Add title and axis labels
        if self.title is not None:
            ax.set_title(self.title)

        # Set the extent
        # Bug in Cartopy Dec'17 - Global extent will not be plotted with
        # extent[0] = 0, extent[1] = 360 So the longitudinal extents are
        # deliberately taken in by 0.1
        if abs(self.extent[1] - self.extent[0]) > 330:
            self.extent[0] = -179.9
            self.extent[1] = 179.9
        ax.set_extent(self.extent, crs=ccrs.PlateCarree())

        # Determine extent of plotting region and use this to
        # select an appropriate mapping zoom
        if abs(self.extent[1] - self.extent[0]) < 15.0:
            res = '10m'
        elif abs(self.extent[1] - self.extent[0]) < 50.0:
            res = '50m'
        else:
            res = '110m'

        if self.mapping == 'countries' or self.mapping == 'states':
            countries = cfeature.NaturalEarthFeature(
                category='cultural',
                name='admin_0_countries_lakes',
                scale=res,
                facecolor='none')

        if self.mapping == 'states':
            states = cfeature.NaturalEarthFeature(
                category='cultural',
                name='admin_1_states_provinces_shp',
                scale=res,
                facecolor='none')

        if self.mapping == 'coastlines':

            ax.coastlines(res)

        elif self.mapping == 'countries':

            ax.coastlines(res, zorder=3)
            ax.add_feature(countries,
                           edgecolor='gray',
                           zorder=2,
                           linewidth=0.5)

        elif self.mapping == 'states':

            ax.coastlines(res, zorder=3)
            ax.add_feature(countries, edgecolor='gray', zorder=2, linewidth=1)
            ax.add_feature(states,
                           edgecolor='lightgray',
                           zorder=2,
                           linewidth=0.5)

        elif self.mapping == 'wms':
            # NOTE WMS mapping does not appear to work for extents
            # greater than 130 degrees in either direction for a
            # typical 6x6 sized map. For smaller maps, the useable
            # WMS extents are smaller.
            # It should also be noted that if the WMS map
            # crosses 180E/W, if the northern or southern
            # edge of the map is on the equator, this will
            # result in the size of page and the placing of
            # the map on the page being altered.
            num_layers = np.linspace(0, 40, 41)
            layers = ['{:.0f}'.format(x) for x in num_layers]
            ax.add_wms(wms='http://exxdmmsprd01:6080/arcgis/services/DMMS/' +
                       'Global_NE_HC_Hybrid_Greyscale/MapServer/WMSServer',
                       layers=layers)

        #Add gridlines
        if self.gridlines:
            try:
                if self.extent[0] < 180 and self.extent[1] > 180:
                    xlocs, xlocs_extend = compute_grid_line_locs(self.extent)
                    ax.gridlines(xlocs=xlocs_extend)
                    gl = ax.gridlines(draw_labels=True,
                                      xlocs=xlocs,
                                      linewidth=0.001)
                else:
                    gl = ax.gridlines(draw_labels=True,
                                      linewidth=0.8,
                                      alpha=0.9,
                                      zorder=9)

                gl.xlabels_top = False
                gl.ylabels_right = False
                gl.xformatter = LONGITUDE_FORMATTER
                gl.yformatter = LATITUDE_FORMATTER
            except:
                gl = ax.gridlines()

        # Add information about the release location and time if provided
        if self.release_info is not None:
            release_text = 'Release location: {}, {},\n'.format(
                self.release_info[0], self.release_info[1])
            release_text += 'Release time: {}'.format(self.release_info[2])
            ax.annotate(release_text,
                        xy=(0.5, 0.34),
                        xycoords=('axes fraction', 'figure fraction'),
                        xytext=(0, 10),
                        textcoords='offset points',
                        size=12,
                        ha='center',
                        va='bottom')

        # Apply branding
        if self.mobrand:
            insert_logo()

        return self.fig
Exemplo n.º 14
0
    def plot_layer(self, layer, mapping):
        """
        Method for plotting each individual layer using the information
        provided in the layer class.


        :param layer: field layer to plot.

        :param mapping: map type to use for plot background.

        """
        # First make sure matplotlib knows which figure to draw on:
        fig = self.fig
        alpha = 1.0
        if mapping in ['grey_os', 'wms', 'jam']:
            alpha = 0.5

        # Quick plot on a linear scale if only a colormap is given
        if layer.levels is None and layer.colorscale == 'linear':
            if layer.plottype == 'pcolormesh':
                fig.cf1 = iplt.pcolormesh(layer.cube,
                                          cmap=layer.cmap,
                                          alpha=alpha)
            elif layer.plottype == 'contour':
                fig.cf1 = iplt.contour(layer.cube,
                                       cmap=layer.cmap,
                                       alpha=alpha)
            elif layer.plottype == 'contourf':
                fig.cf1 = iplt.contourf(layer.cube,
                                        cmap=layer.cmap,
                                        alpha=alpha)
            elif layer.plottype == 'contourf_edge':
                fig.cf1 = iplt.contourf(layer.cube,
                                        cmap=layer.cmap,
                                        alpha=alpha)
                iplt.contour(layer.cube, levels=fig.cf1.levels, colors='k')
            elif layer.plottype == 'scatter_latlon':
                fig.cf1 = iplt.scatter(layer.cube.coord('longitude'),
                                       layer.cube.coord('latitude'),
                                       c=np.atleast_1d(layer.cube.data),
                                       marker=layer.marker,
                                       s=layer.markersize,
                                       edgecolors="k",
                                       cmap=layer.cmap)

        else:

            if layer.levels[0] > np.max(layer.cube.data):
                # If max data point is less than lowest level don't
                # plot and don't add a colorbar
                layer.cbar = False
            elif layer.plottype == 'pcolormesh':
                fig.cf1 = iplt.pcolormesh(layer.cube,
                                          cmap=layer.cmap,
                                          norm=layer.norm,
                                          alpha=alpha)
            elif layer.plottype == 'contour':
                fig.cf1 = iplt.contour(layer.cube,
                                       levels=layer.levels,
                                       cmap=layer.cmap,
                                       norm=layer.norm,
                                       alpha=alpha)
            elif layer.plottype == 'contourf':
                fig.cf1 = iplt.contourf(layer.cube,
                                        levels=layer.levels,
                                        cmap=layer.cmap,
                                        norm=layer.norm,
                                        alpha=alpha)
            elif layer.plottype == 'contourf_edge':
                fig.cf1 = iplt.contourf(layer.cube,
                                        levels=layer.levels,
                                        cmap=layer.cmap,
                                        norm=layer.norm,
                                        alpha=alpha)
                iplt.contour(layer.cube,
                             levels=layer.levels,
                             colors='k')
            elif layer.plottype == 'scatter_latlon':
                fig.cf1 = iplt.scatter(layer.cube.coord('longitude'),
                                       layer.cube.coord('latitude'),
                                       c=np.atleast_1d(layer.cube.data),
                                       marker=layer.marker,
                                       s=layer.markersize,
                                       edgecolors="k",
                                       label=layer.label,
                                       cmap=layer.cmap,
                                       norm=layer.norm)

        # Set an axes extent (assuming extent is given in WGS84)
        # Needs to follow plot in order that axes have become geoaxes
        if self.extent is not None:
            plt.gca().set_extent(self.extent, crs=ccrs.PlateCarree())

        # Add a colorbar if required
        # First extract or determine required orientation:
        if layer.cbar_orientation:
            layer.cbar_orientation = layer.cbar_orientation
        elif layer.colorscale == 'linear':
            layer.cbar_orientation = 'horizontal'
        else:
            layer.cbar_orientation = 'vertical'

        # Please note that at this point, unless the 'layer.cbar' variable is
        # explicitly set as False, a colorbar will be constructed anyway.
        if layer.cbar is not False:
            layer.construct_cbar(fig.cf1,
                                 position=None,
                                 orientation=layer.cbar_orientation,
                                 title=None,
                                 title_fontsize=None,
                                 label_fontsize=None,
                                 tickmark_size=None)

        # Tell the object which fig to hold on to:
        self.fig = fig
Exemplo n.º 15
0
 def test_yaxis_labels(self):
     iplt.scatter(self.cube, self.cube.coord("str_coord"))
     self.assertBoundsTickLabels("yaxis")
Exemplo n.º 16
0
    def plot(self, legendcols=None):
        """
        Produce plot.
        :param legendcols: Number of columns to include in legend.
        """

        if not self.lines:
            raise ValueError("SoccerPlot: no lines have been added")

        if self.fig is None:
            self.fig = plt.figure()
        ax = self.fig.add_subplot(111)

        #Scatter Plot
        for line in self.lines:
            if line['marker'] is None:
                line['marker'] = 'o'  #Default value for a scatter plot
            #Check has coordinates
            if line['cube'].coords(self.stat_xaxis) and \
               line['cube'].coords(self.stat_yaxis):
                #Check that data are not all NaNs:
                xaxispts = line['cube'].coord(self.stat_xaxis).points
                yaxispts = line['cube'].coord(self.stat_yaxis).points
                if not np.isnan(np.nanmax(xaxispts)) and \
                   not np.isnan(np.nanmax(yaxispts)):
                    iplt.scatter(line['cube'].coord(self.stat_xaxis),
                                 line['cube'].coord(self.stat_yaxis),
                                 color=np.atleast_1d(line['colour']),
                                 label=line['label'],
                                 marker=line['marker'],
                                 edgecolor='k',
                                 s=30)
            else:
                raise ValueError(
                    "Cube does not have statistics coordinates \n" +
                    "May need to run get_stats() first")

        #Set x & y axis limits
        range_x = self.get_range(self.stat_xaxis)
        if range_x is not None:
            ax.set_xlim(range_x)

        range_y = self.get_range(self.stat_yaxis)
        if range_y is not None:
            ax.set_ylim(range_y)

        #Plot goal regions
        if self.stat_xgoal is None:
            #Get goal if not already set
            self.stat_xgoal = self.get_goals(self.stat_xaxis)
        if self.stat_ygoal is None:
            #Get goal if not already set
            self.stat_ygoal = self.get_goals(self.stat_yaxis)
        if self.stat_xgoal is not None and self.stat_ygoal is not None:
            #Can plot goals - plot as a square
            for xgoal, ygoal in zip(self.stat_xgoal, self.stat_ygoal):
                xpoints = [xgoal, -xgoal, -xgoal, xgoal, xgoal]
                ypoints = [ygoal, ygoal, -ygoal, -ygoal, ygoal]
                ax.plot(xpoints, ypoints, 'k--')

        #Add lines through zero
        ax.plot(ax.get_xlim(), [0, 0], 'k')
        ax.plot([0, 0], ax.get_ylim(), 'k')

        #Add legend
        if self.legend:
            if legendcols is None:
                plotting_functions.add_legend_belowaxes(scatterpoints=1)
            else:
                plotting_functions.add_legend_belowaxes(scatterpoints=1,
                                                        ncol=legendcols)

        #Add title
        if self.title is None:
            self.gen_title()
        ax.set_title(self.title)

        #Add x and y labels
        if self.xlabel is None:
            if self.stat_xaxis in timeseries_stats.STATS_INFO:
                self.xlabel = timeseries_stats.STATS_INFO[
                    self.stat_xaxis]['long_name']
            else:
                self.xlabel = self.stat_xaxis
            ax.set_xlabel(self.xlabel)

        if self.ylabel is None:
            if self.stat_yaxis in timeseries_stats.STATS_INFO:
                self.ylabel = timeseries_stats.STATS_INFO[
                    self.stat_yaxis]['long_name']
            else:
                self.ylabel = self.stat_yaxis
            ax.set_ylabel(self.ylabel)

        #Add gridlines
        if self.gridlines:
            plt.grid()

        # Apply branding
        if self.mobrand:
            line_plot.add_mobranding()

        return self.fig
Exemplo n.º 17
0
        lon_points = [lp + 360 if lp < 0 else lp for lp in lon_points]
        cube.coord('longitude').points = lon_points
        clon = 180

    # Set up figure
    fig = plt.figure(figsize=[11, 7])

    # Scatter plot the plume showing altitude by colour
    ax1 = plt.subplot2grid((3, 3), (0, 0),
                           colspan=2,
                           rowspan=2,
                           projection=ccrs.PlateCarree(central_longitude=clon))
    cf = iplt.scatter(cube.coord('longitude'),
                      cube.coord('latitude'),
                      s=20,
                      c=cube.coord('height').points,
                      edgecolor='',
                      cmap=cmap,
                      norm=norm)
    ax1.coastlines('10m')
    ax1.gridlines()
    ax1.set_extent(extent)
    gl = ax1.gridlines(draw_labels=True, linewidth=0.8, alpha=0.9, zorder=9)

    gl.xlabels_top = False
    gl.ylabels_right = False
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER

    # Scatter plot a cross-section through the plume
    ax2 = plt.subplot2grid((3, 3), (2, 0), colspan=2)
 def test_scatter_with_c_kwarg(self):
     mappable = scatter(self.traj_lon,
                        self.traj_lat,
                        c=self.traj_lon.points)
     cbar = plt.colorbar()
     self.assertIs(cbar.mappable, mappable)
Exemplo n.º 19
0
 def test_yaxis_labels(self):
     iplt.scatter(self.cube, self.cube.coord('str_coord'))
     self.assertBoundsTickLabels('yaxis')