Exemplo n.º 1
0
def test_binary_dice(truth_binary_image, prediction_binary_image,
                     correct_value):
    cm = create_binary_confusion_matrix(truth_binary_image,
                                        prediction_binary_image)

    value = metrics.binary_dice(cm)

    assert value == correct_value
Exemplo n.º 2
0
def compute_metrics(truth_file_stream, prediction_file_stream) -> Dict[str, Dict[str, float]]:
    truth_probabilities = parse_csv(truth_file_stream, CATEGORIES)
    prediction_probabilities = parse_csv(prediction_file_stream, CATEGORIES)

    exclude_rows(truth_probabilities, EXCLUDE_LABELS)
    exclude_rows(prediction_probabilities, EXCLUDE_LABELS)

    validate_rows(truth_probabilities, prediction_probabilities)

    sort_rows(truth_probabilities)
    sort_rows(prediction_probabilities)

    scores: Dict[str, Dict[str, float]] = {}
    for category in CATEGORIES:
        truth_category_probabilities: pd.Series = truth_probabilities[category]
        prediction_category_probabilities: pd.Series = prediction_probabilities[category]

        truth_binary_values: pd.Series = truth_category_probabilities.gt(0.5)
        prediction_binary_values: pd.Series = prediction_category_probabilities.gt(0.5)

        category_cm = create_binary_confusion_matrix(
            truth_binary_values=truth_binary_values.to_numpy(),
            prediction_binary_values=prediction_binary_values.to_numpy(),
            name=category,
        )

        scores[category] = {
            'accuracy': metrics.binary_accuracy(category_cm),
            'sensitivity': metrics.binary_sensitivity(category_cm),
            'specificity': metrics.binary_specificity(category_cm),
            'dice': metrics.binary_dice(category_cm),
            'ppv': metrics.binary_ppv(category_cm),
            'npv': metrics.binary_npv(category_cm),
            'auc': metrics.auc(truth_category_probabilities, prediction_category_probabilities),
            'auc_sens_80': metrics.auc_above_sensitivity(
                truth_category_probabilities, prediction_category_probabilities, 0.80
            ),
            'ap': metrics.average_precision(
                truth_category_probabilities, prediction_category_probabilities
            ),
        }

    # Compute averages for all per-category metrics
    per_category_metrics: ValuesView[str] = next(iter(scores.values())).keys()
    scores['macro_average'] = {
        metric: float(np.mean([scores[category][metric] for category in CATEGORIES]))
        for metric in per_category_metrics
    }

    # Compute multi-category aggregate metrics
    scores['aggregate'] = {
        'balanced_accuracy': metrics.balanced_multiclass_accuracy(
            truth_probabilities, prediction_probabilities
        )
    }

    return scores
Exemplo n.º 3
0
    def _category_score(
        truth_category_probabilities: pd.Series,
        prediction_category_probabilities: pd.Series,
        truth_weights: pd.DataFrame,
        category: str,
    ) -> pd.Series:
        truth_binary_values: pd.Series = truth_category_probabilities.gt(0.5)
        prediction_binary_values: pd.Series = prediction_category_probabilities.gt(0.5)

        category_cm = create_binary_confusion_matrix(
            truth_binary_values=truth_binary_values.to_numpy(),
            prediction_binary_values=prediction_binary_values.to_numpy(),
            weights=truth_weights.score_weight.to_numpy(),
            name=category,
        )

        return pd.Series(
            {
                'accuracy': metrics.binary_accuracy(category_cm),
                'sensitivity': metrics.binary_sensitivity(category_cm),
                'specificity': metrics.binary_specificity(category_cm),
                'dice': metrics.binary_dice(category_cm),
                'ppv': metrics.binary_ppv(category_cm),
                'npv': metrics.binary_npv(category_cm),
                'auc': metrics.auc(
                    truth_category_probabilities,
                    prediction_category_probabilities,
                    truth_weights.score_weight,
                ),
                'auc_sens_80': metrics.auc_above_sensitivity(
                    truth_category_probabilities,
                    prediction_category_probabilities,
                    truth_weights.score_weight,
                    0.80,
                ),
                'ap': metrics.average_precision(
                    truth_category_probabilities,
                    prediction_category_probabilities,
                    truth_weights.score_weight,
                ),
            },
            index=[
                'accuracy',
                'sensitivity',
                'specificity',
                'dice',
                'ppv',
                'npv',
                'auc',
                'auc_sens_80',
                'ap',
            ],
            name=category,
        )
Exemplo n.º 4
0
def score(truth_path: pathlib.Path, prediction_path: pathlib.Path) -> ScoresType:
    confusion_matrics = pd.DataFrame(
        [
            create_binary_confusion_matrix(
                truth_binary_values=image_pair.truth_image > 128,
                prediction_binary_values=image_pair.prediction_image > 128,
                name=(image_pair.attribute_id, image_pair.image_id),
            )
            for image_pair in iter_image_pairs(truth_path, prediction_path)
        ]
    )
    confusion_matrics = confusion_matrics.reindex(
        index=pd.MultiIndex.from_tuples(confusion_matrics.index, names=('attribute_id', 'image_id'))
    )

    # Normalize all values, since image sizes vary
    normalized_confusion_matrics = confusion_matrics.apply(
        normalize_confusion_matrix, axis='columns'
    )

    scores: ScoresType = {}
    for attribute in sorted(confusion_matrics.index.unique('attribute_id')):
        attribute_confusion_matrics = normalized_confusion_matrics.loc(axis=0)[attribute, :]
        sum_attribute_confusion_matrics = attribute_confusion_matrics.sum(axis='index')

        scores[attribute] = {
            'jaccard': metrics.binary_jaccard(sum_attribute_confusion_matrics),
            'dice': metrics.binary_dice(sum_attribute_confusion_matrics),
        }

    sum_confusion_matrix = normalized_confusion_matrics.sum(axis='index')
    scores['micro_average'] = {
        'jaccard': metrics.binary_jaccard(sum_confusion_matrix),
        'dice': metrics.binary_dice(sum_confusion_matrix),
    }

    score['overall'] = scores['micro_average']['jaccard']

    return scores
Exemplo n.º 5
0
def score(truth_path: pathlib.Path, prediction_path: pathlib.Path) -> Dict[str, Dict[str, float]]:
    confusion_matrics = pd.DataFrame(
        [
            create_binary_confusion_matrix(
                truth_binary_values=image_pair.truth_image > 128,
                prediction_binary_values=image_pair.predictionImage > 128,
                name=(image_pair.attribute_id, image_pair.imageId),
            )
            for image_pair in iter_image_pairs(truth_path, prediction_path)
        ]
    )
    confusion_matrics = confusion_matrics.reindex(
        index=pd.MultiIndex.from_tuples(confusion_matrics.index, names=('attributeId', 'imageId'))
    )

    # Normalize all values, since image sizes vary
    normalized_confusion_matrics = confusion_matrics.apply(
        normalize_confusion_matrix, axis='columns'
    )

    scores: Dict[str, Dict[str, float]] = {}
    for attribute in sorted(confusion_matrics.index.unique('attributeId')):
        attribute_confusion_matrics = normalized_confusion_matrics.loc(axis=0)[attribute, :]
        sum_attribute_confusion_matrics = attribute_confusion_matrics.sum(axis='index')

        scores[attribute] = {
            'jaccard': metrics.binary_jaccard(sum_attribute_confusion_matrics),
            'dice': metrics.binary_dice(sum_attribute_confusion_matrics),
        }

    sum_confusion_matrix = normalized_confusion_matrics.sum(axis='index')
    scores['micro_average'] = {
        'jaccard': metrics.binary_jaccard(sum_confusion_matrix),
        'dice': metrics.binary_dice(sum_confusion_matrix),
    }

    return scores
def test_binary_dice(truth_binary_image, prediction_binary_image, correct_value):
    cm = create_binary_confusion_matrix(truth_binary_image, prediction_binary_image)

    value = metrics.binary_dice(cm)

    assert value == correct_value
Exemplo n.º 7
0
def compute_metrics(truth_file_stream, prediction_file_stream) -> ScoresType:
    truth_probabilities, truth_weights = parse_truth_csv(truth_file_stream)
    categories = truth_probabilities.columns
    prediction_probabilities = parse_csv(prediction_file_stream, categories)

    validate_rows(truth_probabilities, prediction_probabilities)

    sort_rows(truth_probabilities)
    sort_rows(prediction_probabilities)

    scores: ScoresType = {}
    for category in categories:
        truth_category_probabilities: pd.Series = truth_probabilities[category]
        prediction_category_probabilities: pd.Series = prediction_probabilities[
            category]

        truth_binary_values: pd.Series = truth_category_probabilities.gt(0.5)
        prediction_binary_values: pd.Series = prediction_category_probabilities.gt(
            0.5)

        category_cm = create_binary_confusion_matrix(
            truth_binary_values=truth_binary_values.to_numpy(),
            prediction_binary_values=prediction_binary_values.to_numpy(),
            weights=truth_weights.score_weight.to_numpy(),
            name=category,
        )

        scores[category] = {
            'accuracy':
            metrics.binary_accuracy(category_cm),
            'sensitivity':
            metrics.binary_sensitivity(category_cm),
            'specificity':
            metrics.binary_specificity(category_cm),
            'dice':
            metrics.binary_dice(category_cm),
            'ppv':
            metrics.binary_ppv(category_cm),
            'npv':
            metrics.binary_npv(category_cm),
            'auc':
            metrics.auc(
                truth_category_probabilities,
                prediction_category_probabilities,
                truth_weights.score_weight,
            ),
            'auc_sens_80':
            metrics.auc_above_sensitivity(
                truth_category_probabilities,
                prediction_category_probabilities,
                truth_weights.score_weight,
                0.80,
            ),
            'ap':
            metrics.average_precision(
                truth_category_probabilities,
                prediction_category_probabilities,
                truth_weights.score_weight,
            ),
            'roc':
            metrics.roc(
                truth_category_probabilities,
                prediction_category_probabilities,
                truth_weights.score_weight,
            ),
        }

    # Compute averages for all per-category metrics
    per_category_metrics: KeysView[str] = next(iter(scores.values())).keys()
    scores['macro_average'] = {
        metric:
        float(np.mean([scores[category][metric] for category in categories]))
        for metric in per_category_metrics if metric != 'roc'
    }

    # Compute multi-category aggregate metrics
    scores['aggregate'] = {
        'balanced_accuracy':
        metrics.balanced_multiclass_accuracy(truth_probabilities,
                                             prediction_probabilities,
                                             truth_weights.score_weight)
    }

    scores['overall'] = scores['aggregate']['balanced_accuracy']
    scores['validation'] = metrics.balanced_multiclass_accuracy(
        truth_probabilities, prediction_probabilities,
        truth_weights.validation_weight)

    return scores