Exemplo n.º 1
0
def itch_data_plot_generator(tickers, dates):
    """Generates all the analysis and plots from the ITCH data.

    :param tickers: list of the string abbreviation of the stocks to be
     analized (i.e. ['AAPL', 'MSFT']).
    :param dates: list of strings with the date of the data to be extracted
     (i.e. ['2008-01-02', '2008-01-03]).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:

        # Basic functions
        pool.starmap(
            itch_data_analysis_data_extraction.itch_midpoint_second_data,
            iprod(tickers, dates))
        pool.starmap(
            itch_data_analysis_data_extraction.itch_trade_signs_second_data,
            iprod(tickers, dates))

        # Plot
        pool.starmap(itch_data_plot_data_extraction.itch_midpoint_second_plot,
                     iprod(tickers, [dates]))

    return None
Exemplo n.º 2
0
Arquivo: ca.py Projeto: artemyk/dynpy
    def __init__(self, num_vars, num_neighbors, rule, mode="RULENUMBER", dim=1):

        if dim <= 0:
            raise ValueError("dim must be strictly positive")
        elif dim == 1 and not isinstance(num_vars, list):
            num_vars = [num_vars]

        if not isinstance(num_vars, list) or len(num_vars) != dim:
            raise ValueError("num_vars should be list with %d elements" % dims)

        all_vars = np.array(list(iprod(*[list(range(d)) for d in num_vars])))
        total_num_vars = len(all_vars)
        all_var_ndxs = {tuple(v): ndx for ndx, v in enumerate(all_vars)}

        neighbor_offsets = np.array(list(iprod(*[list(range(-num_neighbors, num_neighbors + 1)) for d in num_vars])))
        if mode == "FUNC":
            updaterule = self._updatefunc_to_truthtables(len(neighbor_offsets), rule)
        elif mode == "RULENUMBER":
            all_neighbor_cnt = (2 * num_neighbors) ** dim
            updaterule = list(int2tuple(rule, 2 ** (all_neighbor_cnt + 1)))
        elif mode == "TRUTHTABLE":
            updaterule = rule
        else:
            raise ValueError("Unknown mode %s" % mode)

        rules = []

        for v in all_vars:
            conns = []
            coffsets = v + neighbor_offsets
            conn_address = zip(*[(coffsets[:, d] % num_vars[d]) for d in range(dim)])
            conns = [all_var_ndxs[v] for v in conn_address]
            rules.append([tuple(v), conns, updaterule])

        super(CellularAutomaton, self).__init__(rules=rules, mode="TRUTHTABLES")
Exemplo n.º 3
0
def taq_daily_data_extract(tickers, year):
    """ Extracts data to daily CSV files.

    Extract and filter the data for every day of a year in HDF5 files.

    :param tickers: list of the string abbreviation of the stocks to be
     analyzed (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analyzed (i.e '2016').
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Extract daily data
    print('Extracting daily data')
    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        pool.starmap(taq_data_extract, iprod(tickers, ['quotes'], [year]))
    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        pool.starmap(taq_data_extract, iprod(tickers, ['trades'], [year]))

    # Delete CSV folder
    # Obtain the absolute path of the current file and split it
    abs_path = os.path.abspath(__file__).split('/')
    # Take the path from the start to the project folder
    root_path = '/'.join(abs_path[:abs_path.index('project') + 1])
    f_path = root_path + f'/taq_data/csv_year_data_{year}/'
    # Remove CSV folder
    subprocess.call(f'rm -r {f_path}', shell=True)

    return None
Exemplo n.º 4
0
    def pointGroup(self):
        from itertools import product as iprod
        import numpy.linalg as LA
        # Find the symmetry operators and centers where the basis is unchanged
        
        # Use the least common siesta atom type to find possible centers
        abundance = [N.sum(N.array(self.basis.snr)==snr) for snr in self.basis.snr]
        whichsnr  = self.basis.snr[N.where(N.array(abundance)==N.min(abundance))[0][0]]

        Ulist,a1,a2,a3 = self.pointU33, self.a1, self.a2, self.a3
        pointU,  pointO = [],  []
        for iU, U in enumerate(Ulist):
            SIO.printDone(iU, len(Ulist), 'Looking for point group')

            xyz= self.basis.xyz[N.where(self.basis.snr==whichsnr)[0]]
            # Find centers by solving U(x_i-o)==x_j-o +R where o is center, R is lattice vector 
            centers = []
            A = U-N.eye(3)
            for i1, i2, i3 in iprod(range(-1, 2),repeat=3):
                for ii,jj in iprod(range(len(xyz)),repeat=2):
                    sol = LA.lstsq(A,mm(U,xyz[ii,:].transpose())-xyz[jj,:].transpose()+(a1*i1+a2*i2+a3*i3))[0]
                    correct = not N.any(N.abs(mm(A,sol)-mm(U, xyz[ii,:].transpose())+xyz[jj,:].transpose()-(a1*i1+a2*i2+a3*i3))>1e-6)
                    if correct: centers += [sol]
            centers = myUnique2(moveIntoCell(N.array(centers),a1,a2,a3,self.accuracy),self.accuracy)
            # All centers are not correct since we only looked at one atom type and 
            # remove repeats of the same symmetry by looking at ipvi, i.e., which atom moves onto which
            origin, ipiv = [], []
            for o in centers:
                xyz, nxyz = self.basis.xyz, mm(U,self.basis.xyz.transpose()-o.reshape((3,1))).transpose()+o
                xyz, nxyz = moveIntoCell(xyz,a1,a2,a3,self.accuracy), moveIntoCell(nxyz,a1,a2,a3,self.accuracy)
                thisipiv = []
                for ix,x in enumerate(xyz):
                    for iy,y in enumerate(nxyz):
                        if N.allclose(x,y,atol=self.accuracy):
                            thisipiv+=[iy]
                
                trueSym = len(thisipiv)==self.basis.NN and N.allclose(N.array(self.basis.snr)[thisipiv],self.basis.snr) and N.allclose(N.sort(thisipiv),N.arange(self.basis.NN))
                if trueSym and len(myIntersect(N.array(ipiv),N.array([thisipiv]),self.accuracy))==0:
                    origin, ipiv = origin+[o], ipiv+[thisipiv]
            if len(origin)>0:
                pointU+=[U]
                pointO+=[origin]
                
        self.U33, self.origo = pointU, pointO
        print("Symmetry: %i point symmetry operations (with rotation centers) found for lattice+basis."%len(pointU))

        # Calculate rank of operations
        self.rankU33, sign = [], []
        for U in self.U33:
            tmp, ii = U, 1
            while ii<7 and not N.allclose(N.eye(3),tmp,atol=self.accuracy):
                tmp, ii = mm(tmp,U), ii+1
            if ii > 6: sys.exit('Symmetry error: rank >6 !!')
            self.rankU33 += [ii]
            sign += [N.linalg.det(U)]
        print "Symmetry: rank*det"
        print N.array(self.rankU33)*sign
        return
Exemplo n.º 5
0
    def pointGroup(self):
        from itertools import product as iprod
        import numpy.linalg as LA
        # Find the symmetry operators and centers where the basis is unchanged

        # Use the least common siesta atom type to find possible centers
        abundance = [N.sum(N.array(self.basis.snr) == snr) for snr in self.basis.snr]
        whichsnr = self.basis.snr[N.where(N.array(abundance) == N.min(abundance))[0][0]]

        Ulist, a1, a2, a3 = self.pointU33, self.a1, self.a2, self.a3
        pointU,  pointO = [],  []
        for iU, U in enumerate(Ulist):
            SIO.printDone(iU, len(Ulist), 'Looking for point group')

            xyz = self.basis.xyz[N.where(self.basis.snr == whichsnr)[0]]
            # Find centers by solving U(x_i-o)==x_j-o +R where o is center, R is lattice vector
            centers = []
            A = U-N.eye(3)
            for i1, i2, i3 in iprod(range(-1, 2), repeat=3):
                for ii, jj in iprod(range(len(xyz)), repeat=2):
                    sol = LA.lstsq(A, mm(U, xyz[ii, :].transpose())-xyz[jj, :].transpose()+(a1*i1+a2*i2+a3*i3))[0]
                    correct = not N.any(N.abs(mm(A, sol)-mm(U, xyz[ii, :].transpose())+xyz[jj, :].transpose()-(a1*i1+a2*i2+a3*i3)) > 1e-6)
                    if correct: centers += [sol]
            centers = myUnique2(moveIntoCell(N.array(centers), a1, a2, a3, self.accuracy), self.accuracy)
            # All centers are not correct since we only looked at one atom type and
            # remove repeats of the same symmetry by looking at ipvi, i.e., which atom moves onto which
            origin, ipiv = [], []
            for o in centers:
                xyz, nxyz = self.basis.xyz, mm(U, self.basis.xyz.transpose()-o.reshape((3, 1))).transpose()+o
                xyz, nxyz = moveIntoCell(xyz, a1, a2, a3, self.accuracy), moveIntoCell(nxyz, a1, a2, a3, self.accuracy)
                thisipiv = []
                for x in xyz:
                    for iy, y in enumerate(nxyz):
                        if N.allclose(x, y, atol=self.accuracy):
                            thisipiv += [iy]

                trueSym = len(thisipiv) == self.basis.NN and N.allclose(N.array(self.basis.snr)[thisipiv], self.basis.snr) and N.allclose(N.sort(thisipiv), N.arange(self.basis.NN))
                if trueSym and len(myIntersect(N.array(ipiv), N.array([thisipiv]), self.accuracy)) == 0:
                    origin, ipiv = origin+[o], ipiv+[thisipiv]
            if len(origin) > 0:
                pointU += [U]
                pointO += [origin]

        self.U33, self.origo = pointU, pointO
        print("Symmetry: %i point symmetry operations (with rotation centers) found for lattice+basis."%len(pointU))

        # Calculate rank of operations
        self.rankU33, sign = [], []
        for U in self.U33:
            tmp, ii = U, 1
            while ii < 7 and not N.allclose(N.eye(3), tmp, atol=self.accuracy):
                tmp, ii = mm(tmp, U), ii+1
            if ii > 6: sys.exit('Symmetry error: rank >6 !!')
            self.rankU33 += [ii]
            sign += [N.linalg.det(U)]
        print "Symmetry: rank*det"
        print N.array(self.rankU33)*sign
        return
Exemplo n.º 6
0
def taq_data_plot_generator(tickers, year, shifts):
    """Generates all the analysis and plots from the TAQ data.

    :param tickers: list of the string abbreviation of the stocks to be
     analyzed (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analyzed (i.e '2016').
    :param shifts: list of integers greater than zero (i.e. [1, 10, 50]).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    date_list = taq_data_tools_responses_physical_shift \
        .taq_bussiness_days(year)

    # Especific functions
    # Self-response
    for ticker in tickers:
        for shift in shifts:

            taq_data_analysis_responses_physical_shift \
                .taq_self_response_year_responses_physical_shift_data(ticker,
                                                                      year,
                                                                      shift)

    ticker_prod = iprod(tickers, tickers)
    # ticker_prod = [('AAPL', 'MSFT'), ('MSFT', 'AAPL'),
    #                ('GS', 'JPM'), ('JPM', 'GS'),
    #                ('CVX', 'XOM'), ('XOM', 'CVX'),
    #                ('GOOG', 'MA'), ('MA', 'GOOG'),
    #                ('CME', 'GS'), ('GS', 'CME'),
    #                ('RIG', 'APA'), ('APA', 'RIG')]

    # Cross-response
    for ticks in ticker_prod:
        for shift in shifts:

            taq_data_analysis_responses_physical_shift \
                .taq_cross_response_year_responses_physical_shift_data(
                    ticks[0], ticks[1], year, shift)

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Plot
        pool.starmap(
            taq_data_plot_responses_physical_shift.
            taq_self_response_year_avg_responses_physical_shift_plot,
            iprod(tickers, [year], [shifts]))
    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Plot
        pool.starmap(
            taq_data_plot_responses_physical_shift.
            taq_cross_response_year_avg_responses_physical_shift_plot,
            iprod(tickers, tickers, [year], [shifts]))

    return None
Exemplo n.º 7
0
def taq_data_plot_generator(tickers, year, tau, taus_p):
    """Generates all the analysis and plots from the TAQ data.

    :param tickers: list of the string abbreviation of the stocks to be
     analyzed (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analyzed (i.e '2016').
    :param taus: Integer great than zero (i.e. 1000).
    :param taus_p: list of integers great than zero (i.e. [1, 10, 50]).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Specific functions
    # Self-response
    for ticker in tickers:
        for tau_p in taus_p:

            taq_data_analysis_responses_physical_short_long \
                .taq_self_response_year_responses_physical_short_long_data(
                    ticker, year, tau, tau_p)

    ticker_prod = iprod(tickers, tickers)
    # ticker_prod = [('AAPL', 'MSFT'), ('MSFT', 'AAPL'),
    #                ('GS', 'JPM'), ('JPM', 'GS'),
    #                ('CVX', 'XOM'), ('XOM', 'CVX'),
    #                ('GOOG', 'MA'), ('MA', 'GOOG'),
    #                ('CME', 'GS'), ('GS', 'CME'),
    #                ('RIG', 'APA'), ('APA', 'RIG')]

    # Cross-response and cross-correlator
    for ticks in ticker_prod:
        for tau_p in taus_p:

            taq_data_analysis_responses_physical_short_long \
                .taq_cross_response_year_responses_physical_short_long_data(
                    ticks[0], ticks[1], year, tau, tau_p)

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Plot
        pool.starmap(
            taq_data_plot_responses_physical_short_long.
            taq_self_response_year_avg_responses_physical_short_long_plot,
            iprod(tickers, [year], [tau], taus_p))
    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Plot
        pool.starmap(
            taq_data_plot_responses_physical_short_long.
            taq_cross_response_year_avg_responses_physical_short_long_plot,
            iprod(tickers, tickers, [year], [tau], taus_p))

    return None
def hist_data_plot_generator(fx_pairs: List[str], years: List[str]) -> None:
    """Generates all the analysis and plots from the HIST data.

    :param fx_pairs: list of the string abbreviation of the forex pairs to be
     analyzed (i.e. ['eur_usd', 'gbp_usd']).
    :param years: list of the string of the year to be analyzed
     (i.e. ['2016', '2017']).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Specific functions
    fx_pair: str
    for fx_pair in fx_pairs:
        for year in years:
            # Self-response
            hist_data_analysis_responses_physical \
                .hist_fx_self_response_year_responses_physical_data(fx_pair,
                                                                    year)

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Plot
        pool.starmap(hist_data_plot_responses_physical
                     .hist_fx_self_response_year_avg_responses_physical_plot,
                     iprod(fx_pairs, years))
Exemplo n.º 9
0
def hist_data_plot_generator(years: List[str], intervals: List[str]) -> None:
    """Generates all the analysis and plots from the HIST data.

    :param fx_pairs: list of the string abbreviation of the forex pairs to be
     analyzed (i.e. ['eur_usd', 'gbp_usd']).
    :param years: list of the string of the year to be analyzed
     (i.e. ['2016', '2017']).
    :param intervals: list of string of the interval to be analyzed
     (i.e. ['week', 'month', 'quarter', 'year'])
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Basic functions
        pool.starmap(
            hist_data_analysis_eigenvectors_physical.
            hist_fx_eigenvectors_physical_data, iprod(years, intervals))

    # Specific functions
    year: str
    for year in years:

        interval: str
        for interval in intervals:

            hist_data_plot_eigenvectors_physical. \
                hist_fx_eigenvectors_physical_plot(year, interval)
Exemplo n.º 10
0
def hist_data_plot_generator(fx_pairs: List[str], years: List[str],
                             weeks: Tuple[str, ...]) -> None:
    """Generates all the analysis and plots from the HIST data.

    :param fx_pairs: list of the string abbreviation of the forex pairs to be
     analyzed (i.e. ['eur_usd', 'gbp_usd']).
    :param years: list of the strings of the years to be analyzed
     (i.e. ['2016', '2017']).
    :param weeks: tuple of the strings of the weeks to be analyzed
     (i.e. ('01', '02')).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    fx_pair: str
    year: str
    for fx_pair in fx_pairs:
        for year in years:
            # Data extraction
            hist_data_analysis_extraction \
                .hist_fx_data_extraction_week(fx_pair, year)

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Basic functions
        pool.starmap(hist_data_analysis_extraction.hist_fx_midpoint_trade_data,
                     iprod(fx_pairs, years, weeks))

    for fx_pair in fx_pairs:
        for year in years:
            # Plot
            hist_data_plot_extraction \
                .hist_fx_midpoint_year_plot(fx_pair, year, weeks)
Exemplo n.º 11
0
def iter_all_dict_combinations_ordered(varied_dict):
    """
    Same as all_dict_combinations but preserves order
    """
    tups_list = [[(key, val) for val in val_list]
                 for (key, val_list) in six.iteritems(varied_dict)]
    dict_iter = (OrderedDict(tups) for tups in iprod(*tups_list))
    return dict_iter
Exemplo n.º 12
0
def all_dict_combinations(varied_dict):
    """
    all_dict_combinations

    Args:
        varied_dict (dict):  a dict with lists of possible parameter settings

    Returns:
        list: dict_list a list of dicts correpsonding to all combinations of params settings

    CommandLine:
        python -m utool.util_dict --test-all_dict_combinations

    Example:
        >>> # ENABLE_DOCTEST
        >>> from utool.util_dict import *  # NOQA
        >>> import utool as ut
        >>> varied_dict = {'logdist_weight': [0.0, 1.0], 'pipeline_root': ['vsmany'], 'sv_on': [True, False, None]}
        >>> dict_list = all_dict_combinations(varied_dict)
        >>> result = str(ut.list_str(dict_list))
        >>> print(result)
        [
            {'logdist_weight': 0.0, 'pipeline_root': 'vsmany', 'sv_on': True,},
            {'logdist_weight': 0.0, 'pipeline_root': 'vsmany', 'sv_on': False,},
            {'logdist_weight': 0.0, 'pipeline_root': 'vsmany', 'sv_on': None,},
            {'logdist_weight': 1.0, 'pipeline_root': 'vsmany', 'sv_on': True,},
            {'logdist_weight': 1.0, 'pipeline_root': 'vsmany', 'sv_on': False,},
            {'logdist_weight': 1.0, 'pipeline_root': 'vsmany', 'sv_on': None,},
        ]

        [
            {'pipeline_root': 'vsmany', 'sv_on': True, 'logdist_weight': 0.0,},
            {'pipeline_root': 'vsmany', 'sv_on': True, 'logdist_weight': 1.0,},
            {'pipeline_root': 'vsmany', 'sv_on': False, 'logdist_weight': 0.0,},
            {'pipeline_root': 'vsmany', 'sv_on': False, 'logdist_weight': 1.0,},
            {'pipeline_root': 'vsmany', 'sv_on': None, 'logdist_weight': 0.0,},
            {'pipeline_root': 'vsmany', 'sv_on': None, 'logdist_weight': 1.0,},
        ]

    Ignore:
        print(x)
        print(y)

        print(ut.hz_str('\n'.join(list(x)), '\n'.join(list(y))))
    """
    #tups_list = [[(key, val) for val in val_list]
    #             if isinstance(val_list, (list, tuple))
    #             else [(key, val_list)]
    #             for (key, val_list) in six.iteritems(varied_dict)]
    tups_list = [[(key, val) for val in val_list]
                 if isinstance(val_list, (list, tuple))
                 else [(key, val_list)]
                 for (key, val_list) in iteritems_sorted(varied_dict)]
    dict_list = [dict(tups) for tups in iprod(*tups_list)]
    #dict_list = [{key: val for (key, val) in tups} for tups in iprod(*tups_list)]
    #from collections import OrderedDict
    #dict_list = [OrderedDict([(key, val) for (key, val) in tups]) for tups in iprod(*tups_list)]
    return dict_list
def taq_cross_response_year_responses_physical_shift_data(ticker_i, ticker_j,
                                                          year, shift):
    """Computes the cross-response of a year.

    Using the taq_cross_response_day_responses_physical_shift_data function
    computes the cross-response function for a year.

    :param ticker_i: string of the abbreviation of the stock to be analyzed
     (i.e. 'AAPL').
    :param ticker_j: string of the abbreviation of the stock to be analyzed
     (i.e. 'AAPL').
    :param year: string of the year to be analyzed (i.e '2016').
    :param shift: integer great than zero (i.e. 50).
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    if (ticker_i == ticker_j):

        # Self-response
        return None

    else:
        function_name = taq_cross_response_year_responses_physical_shift_data\
                        .__name__
        taq_data_tools_responses_physical_shift \
            .taq_function_header_print_data(function_name, ticker_i, ticker_j,
                                            year, '', '')

        dates = taq_data_tools_responses_physical_shift \
            .taq_bussiness_days(year)

        cross_values = []
        args_prod = iprod([ticker_i], [ticker_j], dates, [shift])

        # Parallel computation of the cross-responses. Every result is appended
        # to a list
        with mp.Pool(processes=mp.cpu_count()) as pool:
            cross_values.append(pool.starmap(
                taq_cross_response_day_responses_physical_shift_data,
                args_prod))

        # To obtain the total cross-response, I sum over all the cross-response
        # values and all the amount of trades (averaging values)
        cross_v_final = np.sum(cross_values[0], axis=0)

        cross_response_val = cross_v_final[0] / cross_v_final[1]
        cross_response_avg = cross_v_final[1]

        # Saving data
        taq_data_tools_responses_physical_shift \
            .taq_save_data(f'{function_name}_shift_{shift}',
                           cross_response_val, ticker_i, ticker_j, year, '',
                           '')

        return (cross_response_val, cross_response_avg)
Exemplo n.º 14
0
def taq_trade_sign_cross_correlator_year_responses_physical_data(ticker_i,
                                                                 ticker_j,
                                                                 year):
    """Computes the trade sign-cross correlator of a year.

    Using the taq_trade_sign_cross_correlator_day_responses_physical_data
    function computes the cross-correlator function for a year.

    :param ticker_i: string of the abbreviation of the stock to be analyzed
     (i.e. 'AAPL').
    :param ticker_j: string of the abbreviation of the stock to be analyzed
     (i.e. 'AAPL').
    :param year: string of the year to be analyzed (i.e '2016').
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    if (ticker_i == ticker_j):

        # Self-response
        return None

    else:
        function_name = \
            taq_trade_sign_cross_correlator_year_responses_physical_data \
            .__name__
        taq_data_tools_responses_physical \
            .taq_function_header_print_data(function_name, ticker_i, ticker_j,
                                            year, '', '')

        dates = taq_data_tools_responses_physical.taq_bussiness_days(year)

        cross_values = []
        args_prod = iprod([ticker_i], [ticker_j], dates)

        # Parallel computation of the cross-correlator. Every result is
        # appended to a list
        with mp.Pool(processes=mp.cpu_count()) as pool:
            cross_values.append(pool.starmap(
                taq_trade_sign_cross_correlator_day_responses_physical_data,
                args_prod))

        # To obtain the total cross-correlator, I sum over all the
        # cross-correlator values and all the amount of trades
        # (averaging values)
        cross_v_final = np.sum(cross_values[0], axis=0)

        cross_correlator_val = cross_v_final[0] / cross_v_final[1]
        cross_correlator_avg = cross_v_final[1]

        # Saving data
        taq_data_tools_responses_physical \
            .taq_save_data(function_name, cross_correlator_val, ticker_i,
                           ticker_j, year, '', '')

        return (cross_correlator_val, cross_correlator_avg)
Exemplo n.º 15
0
    def makeHumanReadable(self, a1, a2, a3):
        from itertools import product as iprod
        # TODO! Does not give "Human" readbility ...
        # Choose vectors that give the smallest angles between a1..a3

        # Sort on length
        ipiv = N.argsort(distance(N.array([a1, a2, a3])))
        na1 = [a1, a2, a3][ipiv[0]]
        na2 = [a1, a2, a3][ipiv[1]]
        na3 = [a1, a2, a3][ipiv[2]]
        a1, a2, a3 = na1, na2, na3

        # Make possible n a1 + m a2 + l a3
        poss = []
        for i1, i2, i3 in iprod(range(-1, 2), repeat=3):
            poss += [a1 * i1 + a2 * i2 + a3 * i3]
        poss = N.array(poss)

        # possiblities for a1, a2, a3 based on length
        poss1 = poss[N.where(
            N.abs(distance(poss) - distance(a1)) < self.accuracy)]
        poss2 = poss[N.where(
            N.abs(distance(poss) - distance(a2)) < self.accuracy)]
        poss3 = poss[N.where(
            N.abs(distance(poss) - distance(a3)) < self.accuracy)]
        poss = N.concatenate((poss1, poss2, poss3))  # Keep duplicates

        # Choose the one fitting the PBC best
        vec = self.pbc[0, :]
        scal = mm(vec, N.transpose(poss))
        a1 = poss[N.where(N.sort(scal)[-1] == scal)[0][0]]

        # Remove linear dependent
        poss=poss[N.where(N.abs(N.abs(mm(poss, a1))-\
                                    N.abs(distance(poss)*distance(a1)))>self.accuracy)]

        # Choose the one fitting the PBC best
        vec = self.pbc[1, :]
        scal = mm(vec, N.transpose(poss))
        a2 = poss[N.where(N.sort(scal)[-1] == scal)[0][0]]

        # Remove linear dependent
        poss=poss[N.where(N.abs(N.abs(mm(poss, a2))-\
                                    N.abs(distance(poss)*distance(a2)))>self.accuracy)]

        # Choose the one fitting the PBC best
        vec = self.pbc[2, :]
        scal = mm(vec, N.transpose(poss))
        a3 = poss[N.where(N.sort(scal)[-1] == scal)[0][0]]

        if N.linalg.det([a1, a2, a3]) < -self.accuracy:
            a3 = -a3

        return a1, a2, a3
Exemplo n.º 16
0
def extract_detector_negatives(hs, output_dir, batch_extract_kwargs):
    from itertools import product as iprod
    negreg_dir = join(output_dir, 'negatives', 'regions')
    negall_dir = join(output_dir, 'negatives', 'whole')
    negreg_fmt = join(negreg_dir, 'gx%d_wix%d_hix%d_neg.png')
    negall_fmt = join(negall_dir, 'gx%d_all_neg.png')
    helpers.ensuredir(negall_dir)
    helpers.ensuredir(negreg_dir)

    print('[train] extract_negatives')
    gx_list = hs.get_valid_gxs()
    nChips_list = np.array(hs.gx2_nChips(gx_list))
    aif_list = np.array(hs.gx2_aif(gx_list))

    # Find images where there are completely negative. They have no animals.
    #is_negative = np.logical_and(aif_list, nChips_list)
    is_completely_negative = np.logical_and(aif_list, nChips_list == 0)
    negall_gxs = gx_list[np.where(is_completely_negative)[0]]

    gfpath_list = []
    cfpath_list = []
    roi_list = []

    def add_neg_eg(roi, gfpath, cfpath):
        roi_list.append(roi)
        gfpath_list.append(gfpath)
        cfpath_list.append(cfpath)

    width_split = 2
    (uw, uh) = batch_extract_kwargs['uniform_size']

    for gx in negall_gxs:
        gfpath = hs.gx2_gname(gx, full=True)
        # Add whole negative image
        (gw, gh) = hs.gx2_image_size(gx)
        roi = (0, 0, gw, gh)
        add_neg_eg(roi, gfpath, negall_fmt % (gx))
        # Add negative regions
        w_step = gw // width_split
        h_step = int(round(gh * (w_step / gw)))
        nHeights, nWidths  = gh // h_step, gw // w_step
        if nWidths < 2 or nHeights < 1:
            continue
        for wix, hix in iprod(xrange(nWidths), xrange(nHeights)):
            x, y = wix * w_step, hix * h_step
            w, h = w_step, h_step
            roi = (x, y, w, h)
            add_neg_eg(roi, gfpath, negreg_fmt % (gx, wix, hix))

    theta_list = [0] * len(roi_list)

    cc2.batch_extract_chips(gfpath_list, cfpath_list, roi_list, theta_list,
                            **batch_extract_kwargs)
Exemplo n.º 17
0
def CMHtest(var1,var2,controls=None):
	[] if controls == None else controls=controls
	"""
	In progress
	"""
	stratum = list(iprod([unique(i) for i in controls]))
	for i,k in enumerate(stratum):
		n_k = 0
		



	return None
def hist_download_all_data(fx_pairs: List[str], years: List[str]) -> None:
    """Downloads all the HIST data.

    :param fx_pairs: list of the string abbreviation of the forex pairs to be
     analyzed (i.e. ['eur_usd', 'gbp_usd']).
    :param years: list of the strings of the years to be analyzed
     (i.e. ['2016', '2017]).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    with mp.Pool(processes=mp.cpu_count()) as pool:
        pool.starmap(hist_download_data, iprod(fx_pairs, years))
Exemplo n.º 19
0
    def makeHumanReadable(self,a1,a2,a3):
        from itertools import product as iprod
        # TODO! Does not give "Human" readbility ...
        # Choose vectors that give the smallest angles between a1..a3

        # Sort on length
        ipiv = N.argsort(distance(N.array([a1,a2,a3])))
        na1 = [a1,a2,a3][ipiv[0]]
        na2 = [a1,a2,a3][ipiv[1]]
        na3 = [a1,a2,a3][ipiv[2]]
        a1,  a2,  a3 = na1,  na2,  na3
        
        # Make possible n a1 + m a2 + l a3 
        poss = []
        for i1, i2, i3 in iprod(range(-1, 2),repeat=3):
            poss += [a1*i1+a2*i2+a3*i3]
        poss = N.array(poss)

        # possiblities for a1, a2, a3 based on length
        poss1 = poss[N.where(N.abs(distance(poss)-distance(a1))<self.accuracy)]
        poss2 = poss[N.where(N.abs(distance(poss)-distance(a2))<self.accuracy)]
        poss3 = poss[N.where(N.abs(distance(poss)-distance(a3))<self.accuracy)]
        poss = N.concatenate((poss1,poss2,poss3)) # Keep duplicates
        
        # Choose the one fitting the PBC best 
        vec = self.pbc[0,:]
        scal = mm(vec,N.transpose(poss))
        a1=poss[N.where(N.sort(scal)[-1]==scal)[0][0]] 
        
        # Remove linear dependent
        poss=poss[N.where(N.abs(N.abs(mm(poss,a1))-\
                                    N.abs(distance(poss)*distance(a1)))>self.accuracy)]

        # Choose the one fitting the PBC best 
        vec = self.pbc[1,:]
        scal = mm(vec,N.transpose(poss))
        a2=poss[N.where(N.sort(scal)[-1]==scal)[0][0]] 

        # Remove linear dependent
        poss=poss[N.where(N.abs(N.abs(mm(poss,a2))-\
                                    N.abs(distance(poss)*distance(a2)))>self.accuracy)]

        # Choose the one fitting the PBC best 
        vec = self.pbc[2,:]
        scal = mm(vec,N.transpose(poss))
        a3=poss[N.where(N.sort(scal)[-1]==scal)[0][0]] 

        if N.linalg.det([a1,a2,a3])<-self.accuracy:
            a3=-a3

        return a1,a2,a3
Exemplo n.º 20
0
def get_gaussimg(width=3, resolution=7):
    half_width = width / 2
    gauss_xs = np.linspace(-half_width, half_width, resolution)
    gauss_ys = np.linspace(-half_width, half_width, resolution)

    gaussspace_xys = np.array(list(iprod(gauss_xs, gauss_ys)))
    gausspace_score = np.array([pdf_norm2d(x, y) for (x, y) in gaussspace_xys])
    gausspace_score -= gausspace_score.min()
    gausspace_score /= gausspace_score.max()

    size = (resolution, resolution)
    gaussimg = gausspace_score.reshape(size).T
    gaussimg = np.array(gaussimg, dtype=np.float32)
    return gaussimg
def taq_quotes_trades_year_avg_spread_data(tickers, year):
    """Obtain the quotes and trades statistics for a year.

    Using the taq_quotes_trades_day_avg_spread_data function computes the
    statistics of the average spread, number of quotes and number of trades
    for a year.

    :param tickers: list of the string abbreviation of the stocks to be
     analyzed (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analyzed (i.e '2016').
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    function_name = taq_quotes_trades_year_avg_spread_data.__name__

    # Pandas DataFrame to store the data
    spread_stats = pd.DataFrame(
        columns=['Ticker', 'Avg_Quotes', 'Avg_Trades', 'Avg_Spread'])

    dates = taq_data_tools_avg_spread.taq_bussiness_days(year)

    for idx, ticker in enumerate(tickers):

        taq_data_tools_avg_spread \
            .taq_function_header_print_data(function_name, ticker, ticker,
                                            year, '', '')

        stat = []
        args_prod = iprod([ticker], dates)

        # Parallel computation of the statistics. Every result is appended to
        # a list
        with mp.Pool(processes=mp.cpu_count()) as pool:
            stat.append(pool.starmap(taq_quotes_trades_day_avg_spread_data,
                        args_prod))

        # To obtain the average of the year, I average all the results of the
        # corresponding values (number quotes, trades and avg spread)
        stat_year = np.nanmean(stat[0], axis=0)
        stat_year = np.round(stat_year, decimals=2)

        spread_stats.loc[idx] = [ticker] + list(stat_year)

    spread_stats.sort_values(by='Avg_Spread', inplace=True)
    spread_stats.to_csv(f'../taq_avg_spread_{year}.csv')
    print(spread_stats)

    return None
def taq_data_plot_generator(tickers, dates):
    """Generates all the analysis and plots from the TAQ data.

    :param tickers: list of the string abbreviation of the stocks to be
     analized (i.e. ['AAPL', 'MSFT']).
    :param dates: list of strings with the date of the data to be extracted
     (i.e. ['2008-01-02', '2008-01-03]).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:

        # Basic functions
        pool.starmap(
            taq_data_analysis_responses_second.taq_midpoint_second_data,
            iprod(tickers, dates))
        pool.starmap(
            taq_data_analysis_responses_second.taq_trade_signs_second_data,
            iprod(tickers, dates))

    # Especific functions
    for ticker in tickers:

        # Self-response
        taq_data_analysis_responses_second \
            .taq_self_response_week_responses_second_data(ticker, dates)

        # Plot
        taq_data_plot_responses_second \
            .taq_midpoint_second_plot(ticker, dates)
        taq_data_plot_responses_second \
            .taq_self_response_week_avg_responses_second_plot(ticker, dates)

    return None
def data_plot_generator(dates: List[List[str]], time_steps: List[str]) -> None:
    """Generates all the analysis and plots from the data.

    :param dates: list of lists of the string of the dates to be analyzed
     (i.e. [['1980-01', '2020-12'], ['1980-01', '2020-12']).
    :param time_steps: list of the string of the time step of the data
     (i.e. ['1m', '2m', '5m']).
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    # Parallel computing
    with mp.Pool(processes=mp.cpu_count()) as pool:
        # Specific functions
        pool.starmap(
            exact_distributions_correlation_analysis.returns_data,
            iprod(dates, time_steps),
        )
        pool.starmap(
            exact_distributions_correlation_analysis.normalized_returns_data,
            iprod(dates, time_steps),
        )
        pool.starmap(
            exact_distributions_correlation_analysis.
            aggregated_dist_returns_market_data,
            iprod(dates, time_steps),
        )

        # Plot
        pool.starmap(exact_distributions_correlation_plot.returns_plot,
                     iprod(dates, time_steps))
        pool.starmap(
            exact_distributions_correlation_plot.
            aggregated_dist_returns_market_plot,
            iprod(dates, time_steps),
        )
Exemplo n.º 24
0
    def latticeGroup(self):
        from itertools import product as iprod
        # Generate all unitary matrices that take a1...a3 to
        #   lattice points

        a1, a2, a3 = self.a1, self.a2, self.a3
        b1, b2, b3 = self.b1, self.b2, self.b3
        points, dist = [], []
        # Generate lattice points
        for i1, i2, i3 in iprod(range(-2, 3), repeat=3):
            points += [i1 * a1 + i2 * a2 + i3 * a3]
            dist += [distance(points[-1])]
        points, dist = N.array(points), N.array(dist)
        a = [a1, a2, a3]
        targets = [[], [], []]
        # Choose all possible target points for a1...a3 with same length
        for ii in range(3):
            targets[ii] = points[N.where(
                abs(dist - distance(a[ii])) < self.accuracy)]
        # Make all possible combinations of targets for a1..a3
        possible = myPermute(targets)
        # Generate unitary transformation from a1, a2, a3 -> possible
        Ulist = []
        for ii in possible:
            # Generate symmetry operations
            U = ii[0].reshape(3, 1)*b1.reshape(1, 3)+\
                ii[1].reshape(3, 1)*b2.reshape(1, 3)+\
                ii[2].reshape(3, 1)*b3.reshape(1, 3)
            if N.allclose(mm(U, N.transpose(U)), N.eye(3), atol=self.accuracy):
                Ulist += [U]

        self.pointU33 = Ulist
        print "Symmetry: %i point symmetry operations found for lattice" % len(
            Ulist)
        sign = N.array([N.linalg.det(ii) for ii in Ulist])

        rotn = []
        for ii in Ulist:
            a, M = ii, 1
            while not N.allclose(N.eye(3), a, atol=self.accuracy):
                a, M = mm(a, ii), M + 1
            rotn += [M]

        self.pointRank = rotn
        print "Symmetry: rank * determinant"
        print sign * self.pointRank

        return
def taq_quotes_trades_year_statistics_data(tickers, year):
    """Obtain the quotes and trades statistics for a year.

    Using the taq_quotes_trades_day_statistics_data function computes the
    statistics of the average spread, number of quotes and number of trades
    for a year.

    :param tickers: list of the string abbreviation of the stocks to be
     analyzed (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analyzed (i.e '2016').
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    function_name = taq_quotes_trades_year_statistics_data.__name__

    # Create a file to save the info
    file = open('../taq_quotes_trades_year_statistics_data.csv', 'a+')
    file.write('Ticker, avg_quotes, avg_trades, avg_spread\n')

    for ticker in tickers:

        taq_data_tools_statistics \
            .taq_function_header_print_data(function_name, ticker, ticker,
                                            year, '', '')

        dates = taq_data_tools_statistics.taq_bussiness_days(year)

        stat = []
        args_prod = iprod([ticker], dates)

        # Parallel computation of the statistics. Every result is appended to
        # a list
        with mp.Pool(processes=mp.cpu_count()) as pool:
            stat.append(
                pool.starmap(taq_quotes_trades_day_statistics_data, args_prod))

        # To obtain the average of the year, I average all the results of the
        # corresponding values (number quotes, trades and avg spread)
        stat_year = np.nanmean(stat[0], axis=0)

        # Write data in file
        file.write(f'{ticker}, {stat_year[0]:.0f}, {stat_year[1]:.0f},' +
                   f' {stat_year[2]:.2f}\n')

    file.close

    return None
def ln_aggregated_dist_returns_market_data(dates: List[str], time_step: str,
                                           window: str) -> None:
    """Computes the aggregated distribution of returns for a market.

    :param dates: List of the interval of dates to be analyzed
     (i.e. ['1980-01', '2020-12']).
    :param time_step: time step of the data (i.e. '1m', '2m', '5m', ...).
    :param window: window time to compute the volatility (i.e. '60').
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    function_name: str = ln_aggregated_dist_returns_market_data.__name__
    local_normalization_tools \
        .function_header_print_data(function_name, dates, time_step, window)

    try:

        # Load data
        stocks_name: pd.DataFrame = pickle.load(open(
            f'../data/correlation_matrix/returns_data_{dates[0]}_{dates[1]}'
            + f'_step_{time_step}.pickle', 'rb')).columns[:20]

        agg_ret_mkt_list: List[float] = []

        stocks_comb: Iterator[Tuple[Any, ...]] = icomb(stocks_name, 2)
        args_prod: Iterator[Any] = iprod([dates], [time_step], stocks_comb,
                                         [window])

        with mp.Pool(processes=mp.cpu_count()) as pool:
            agg_ret_mkt_list.extend(pool.starmap(
                ln_aggregated_dist_returns_pair_data, args_prod))

        agg_ret_mkt_list_flat = [val for sublist in agg_ret_mkt_list for val in sublist]
        agg_ret_mkt_series: pd.Series = pd.Series(agg_ret_mkt_list_flat)

        # Saving data
        local_normalization_tools \
            .save_data(agg_ret_mkt_series, function_name, dates, time_step,
                       window)

        del agg_ret_mkt_list
        del agg_ret_mkt_series

    except FileNotFoundError as error:
        print('No data')
        print(error)
        print()
def hist_quotes_trades_year_avg_spread_data(fx_pairs: List[str],
                                            year: str) -> None:
    """Obtain the quotes and trades statistics for a year.

    Using the hist_quotes_trades_day_avg_spread_data function computes the
    statistics of the average spread, number of quotes and number of trades
    for a year.

    :param fx_pairs: list of the string abbreviation of the fx pairs to be
     analyzed (i.e. ['eur_usd', 'gbp_usd']).
    :param year: String of the years to be analyzed (i.e '2016').
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    function_name: str = hist_quotes_trades_year_avg_spread_data.__name__

    # Pandas DataFrame to store the data
    spread_stats: pd.DataFrame = pd.DataFrame(
        columns=['FxPair', 'Avg_Quotes', 'Avg_Spread'])

    weeks: Tuple[str, ...] = hist_data_tools_avg_spread.hist_weeks()

    idx: int
    fx_pair: str
    for idx, fx_pair in enumerate(fx_pairs):

        hist_data_tools_avg_spread \
            .hist_function_header_print_data(function_name, fx_pair, year, '')

        stat: List[Any] = []
        args_prod: Iterator[Tuple[str, ...]] = iprod([fx_pair], [year], weeks)

        # Parallel computation of the statistics. Every result is appended to
        # a list
        with mp.Pool(processes=mp.cpu_count()) as pool:
            stat.append(pool.starmap(hist_quotes_trades_day_avg_spread_data,
                                     args_prod))

        # To obtain the average of the year, I average all the results of the
        # corresponding values (number quotes, trades and avg spread)
        stat_year: List[str] = list(np.ceil(np.nanmean(stat[0], axis=0)))
        spread_stats.loc[idx] = [fx_pair] + stat_year

    spread_stats.sort_values(by='Avg_Spread', inplace=True)
    spread_stats.to_csv(f'../hist_avg_spread_{year}.csv')
    print(spread_stats)
Exemplo n.º 28
0
    def latticeGroup(self):
        from itertools import product as iprod
        # Generate all unitary matrices that take a1...a3 to
        #   lattice points
        
        a1, a2, a3= self.a1, self.a2, self.a3
        b1, b2, b3= self.b1, self.b2, self.b3
        points, dist = [], []        
        # Generate lattice points
        for i1, i2, i3 in iprod(range(-2, 3),repeat=3):
            points +=[i1*a1+i2*a2+i3*a3]
            dist+=[distance(points[-1])]
        points,  dist = N.array(points),  N.array(dist)
        a = [a1, a2, a3]
        targets = [[], [], []]
        # Choose all possible target points for a1...a3 with same length
        for ii in range(3):
            targets[ii]=points[N.where(abs(dist-distance(a[ii]))<self.accuracy)]
        # Make all possible combinations of targets for a1..a3
        possible = myPermute(targets)
        # Generate unitary transformation from a1, a2, a3 -> possible
        Ulist = []
        for ii in possible:
            # Generate symmetry operations
            U = ii[0].reshape(3,1)*b1.reshape(1,3)+\
                ii[1].reshape(3,1)*b2.reshape(1,3)+\
                ii[2].reshape(3,1)*b3.reshape(1,3)
            if N.allclose(mm(U,N.transpose(U)),N.eye(3), atol=self.accuracy):
                Ulist+=[U]

        self.pointU33 = Ulist
        print "Symmetry: %i point symmetry operations found for lattice"%len(Ulist)
        sign = N.array([N.linalg.det(ii) for ii in Ulist])
        
        rotn = []
        for ii in Ulist:
            a, M = ii, 1
            while not N.allclose(N.eye(3),a,atol=self.accuracy):
                a, M =mm(a,ii), M+1
            rotn+=[M]
        
        self.pointRank = rotn
        print "Symmetry: rank * determinant"
        print sign*self.pointRank

        return
Exemplo n.º 29
0
def taq_trade_sign_self_correlator_year_responses_physical_data(ticker, year):
    """Computes the trade sign self-correlator of a year.

    Using the taq_trade_sign_self_correlator_day_responses_physical_data
    function computes the self-correlator function for a year.

    :param ticker: string of the abbreviation of the stock to be analyzed
     (i.e. 'AAPL').
    :param year: string of the year to be analyzed (i.e '2016').
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    function_name = \
        taq_trade_sign_self_correlator_year_responses_physical_data.__name__
    taq_data_tools_responses_physical \
        .taq_function_header_print_data(function_name, ticker, ticker, year,
                                        '', '')

    dates = taq_data_tools_responses_physical.taq_bussiness_days(year)

    self_values = []
    args_prod = iprod([ticker], dates)

    # Parallel computation of the self-correlator. Every result is appended to
    # a list
    with mp.Pool(processes=mp.cpu_count()) as pool:
        self_values.append(pool.starmap(
            taq_trade_sign_self_correlator_day_responses_physical_data,
            args_prod))

    # To obtain the total self-correlator, I sum over all the self-correlator
    # values and all the amount of trades (averaging values)
    self_v_final = np.sum(self_values[0], axis=0)

    self_correlator_val = self_v_final[0] / self_v_final[1]
    self_correlator_avg = self_v_final[1]

    # Saving data
    taq_data_tools_responses_physical \
        .taq_save_data(function_name, self_correlator_val, ticker, ticker,
                       year, '', '')

    return (self_correlator_val, self_correlator_avg)
def taq_self_response_week_responses_second_data(ticker, dates):
    """Computes the self-response of a year.

    Using the taq_self_response_day_responses_second_data function computes the
    self-response function for a year.

    :param ticker: string of the abbreviation of stock to be analized
     (i.e. 'AAPL').
    :param dates: list of strings with the date of the data to be extracted
     (i.e. ['2008-01-02', '2008-01-03]).
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    year = dates[0].split('-')[0]

    function_name = taq_self_response_week_responses_second_data.__name__
    taq_data_tools_responses_second \
        .taq_function_header_print_data(function_name, ticker, ticker, year,
                                        '', '')

    self_values = []
    args_prod = iprod([ticker], dates)

    # Parallel computation of the self-responses. Every result is appended to
    # a list
    with mp.Pool(processes=mp.cpu_count()) as pool:
        self_values.append(
            pool.starmap(taq_self_response_day_responses_second_data,
                         args_prod))

    # To obtain the total self-response, I sum over all the self-response
    # values and all the amount of trades (averaging values)
    self_v_final = np.sum(self_values[0], axis=0)

    self_response_val = self_v_final[0] / self_v_final[1]
    self_response_avg = self_v_final[1]

    # Saving data
    taq_data_tools_responses_second \
        .taq_save_data(f"{function_name}_{dates[0].split('-')[1]}",
                       self_response_val, ticker, ticker, year, '', '')

    return (self_response_val, self_response_avg)
Exemplo n.º 31
0
def taq_self_response_year_trade_shift_data(ticker, year, tau):
    """Computes the self response of a year.

    Using the taq_self_response_day_trade_shift_data function computes the
    self-response function for a year.

    :param ticker: string of the abbreviation of stock to be analyzed
     (i.e. 'AAPL').
    :param year: string of the year to be analyzed (i.e '2016').
    :param tau: integer great than zero (i.e. 50).
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    function_name = taq_self_response_year_trade_shift_data.__name__
    taq_data_tools_trade_shift \
        .taq_function_header_print_data(function_name, ticker, ticker, year,
                                        '', '')

    dates = taq_data_tools_trade_shift.taq_bussiness_days(year)

    self_values = []
    args_prod = iprod([ticker], dates, [tau])

    # Parallel computation of the self-responses. Every result is appended to
    # a list
    with mp.Pool(processes=mp.cpu_count()) as pool:
        self_values.append(
            pool.starmap(taq_self_response_day_trade_shift_data, args_prod))

    # To obtain the total self-response, I sum over all the self-response
    # values and all the amount of trades (averaging values)
    self_v_final = np.sum(self_values[0], axis=0)

    self_response_val = self_v_final[0] / self_v_final[1]
    self_response_avg = self_v_final[1]

    # Saving data
    taq_data_tools_trade_shift \
        .taq_save_data(f'{function_name}_tau_{tau}', self_response_val, ticker,
                       ticker, year, '', '')

    return (self_response_val, self_response_avg)
Exemplo n.º 32
0
def all_dict_combinations_lbls(varied_dict):
    """ returns a label for each variation in a varydict.
    It tries to not be oververbose and returns only what parameters are varied
    in each label.

    CommandLine:
        python -m utool.util_dict --test-all_dict_combinations_lbls

    Example:
        >>> # ENABLE_DOCTEST
        >>> import utool
        >>> varied_dict = {'logdist_weight': [0.0, 1.0], 'pipeline_root': ['vsmany'], 'sv_on': [True, False, None]}
        >>> comb_lbls = utool.all_dict_combinations_lbls(varied_dict)
        >>> result = (utool.list_str(comb_lbls))
        >>> print(result)
        [
            "(('logdist_weight', 0.0), ('sv_on', True))",
            "(('logdist_weight', 0.0), ('sv_on', False))",
            "(('logdist_weight', 0.0), ('sv_on', None))",
            "(('logdist_weight', 1.0), ('sv_on', True))",
            "(('logdist_weight', 1.0), ('sv_on', False))",
            "(('logdist_weight', 1.0), ('sv_on', None))",
        ]

        [
            "(('sv_on', True), ('logdist_weight', 0.0))",
            "(('sv_on', True), ('logdist_weight', 1.0))",
            "(('sv_on', False), ('logdist_weight', 0.0))",
            "(('sv_on', False), ('logdist_weight', 1.0))",
            "(('sv_on', None), ('logdist_weight', 0.0))",
            "(('sv_on', None), ('logdist_weight', 1.0))",
        ]

    #ut.list_type_profile(comb_lbls)
    """
    # TODO dont do sorted if it an ordered dict
    multitups_list = [[(key, val) for val in val_list]
                      for key, val_list in iteritems_sorted(varied_dict)
                      if isinstance(val_list, (list, tuple)) and len(val_list) > 1]
    comb_lbls = list(map(str, list(iprod(*multitups_list))))
    return comb_lbls
Exemplo n.º 33
0
def hist_fx_self_response_year_responses_physical_data(
        fx_pair: str, year: str) -> Tuple[np.ndarray, ...]:
    """Computes the self-response of a year.

    Using the hist_self_response_year_responses_physical_data function computes
    the self-response function for a year.

    :param ticker: string of the abbreviation of stock to be analyzed
     (i.e. 'AAPL').
    :param year: string of the year to be analyzed (i.e '2016').
    :return: tuple -- The function returns a tuple with numpy arrays.
    """

    function_name: str = hist_fx_self_response_year_responses_physical_data \
        .__name__
    hist_data_tools_responses_physical \
        .hist_function_header_print_data(function_name, fx_pair, year, '')

    weeks: Tuple[str, ...] = hist_data_tools_responses_physical.hist_weeks()

    self_values: List[np.ndarray] = []
    args_prod: Iterator[Tuple[str, ...]] = iprod([fx_pair], [year], weeks)

    # Parallel computation of the self-responses. Every result is appended to
    # a list
    with mp.Pool(processes=mp.cpu_count()) as pool:
        self_values.append(
            pool.starmap(hist_fx_self_response_week_responses_physical_data,
                         args_prod))

    # To obtain the total self-response, I sum over all the self-response
    # values and all the amount of trades (averaging values)
    self_v_final: np.ndarray = np.sum(self_values[0], axis=0)

    self_response_val: np.ndarray = self_v_final[0] / self_v_final[1]
    self_response_avg: np.ndarray = self_v_final[1]

    # Saving data
    if (not os.path.isdir(
            f'../../hist_data/responses_physical_{year}/{function_name}/')):

        try:
            os.mkdir(
                f'../../hist_data/responses_physical_{year}/{function_name}/')
            print('Folder to save data created')

        except FileExistsError:
            print('Folder exists. The folder was not created')

    if (not os.path.isdir(
            f'../../hist_data/responses_physical_{year}/{function_name}/' +
            f'{fx_pair}/')):

        try:
            os.mkdir(
                f'../../hist_data/responses_physical_{year}/{function_name}/' +
                f'{fx_pair}/')
            print('Folder to save data created')

        except FileExistsError:
            print('Folder exists. The folder was not created')

    hist_data_tools_responses_physical \
        .hist_save_data(self_response_val, fx_pair, year)

    return (self_response_val, self_response_avg)
Exemplo n.º 34
0
def group_interactions(Smean, Aij, mwhere, return_all=0, remove_diag=1):
    '''Compute mu,gamma... per group, given interaction matrix Aij and mwhere=[ [idxs of group 1], [...]]'''
    from itertools import product as iprod

    interactions = [[[
        Aij[i, j] for i, j in iprod(m1, m2)
        if ifelse(remove_diag, i != j, True)
    ] for m2 in mwhere] for m1 in mwhere]
    Amean = np.array([[getmean(i) for i in j] for j in interactions])
    Astd = np.array([[getstd(i) for i in j] for j in interactions])

    Arowstd = np.array(
        [[getstd([getmean(Aij[i, m2]) for i in m1]) for m2 in mwhere]
         for m1 in mwhere])

    intsym = [[[
        Aij[i, j] * Aij[j, i] for i, j in iprod(m1, m2) if i != j or im1 != im2
    ] for im2, m2 in enumerate(mwhere)] for im1, m1 in enumerate(mwhere)]
    Asym = np.array([[getmean(i) for i in j] for j in intsym])

    conn = np.array([[getmean(np.array(i) != 0) for i in j]
                     for j in interactions])
    mu = -Smean * Amean
    sigma = np.sqrt(Smean) * Astd
    sigrow = Smean * Arowstd

    # gamma=(Asym-Amean*Amean.T )/(Astd*Astd.T +10**-15 )

    def getcorr(m1, m2, same=0):
        if len(m2) > 1 and len(m1) > 1:
            if same:
                m = m1
                offdiag = (np.eye(len(m)) == 0)
                mat = Aij[np.ix_(m, m)]
                if np.std(mat[offdiag]):
                    return np.corrcoef(mat[offdiag], mat.T[offdiag])[0, 1]
            else:
                if np.std(Aij[np.ix_(m1, m2)]) and np.std(Aij[np.ix_(m2, m1)]):
                    return np.corrcoef(Aij[np.ix_(m1, m2)].ravel(),
                                       Aij[np.ix_(m2, m1)].T.ravel())[0, 1]
        return 0

    gamma = np.array([[getcorr(m1, m2) for im2, m2 in enumerate(mwhere)]
                      for im1, m1 in enumerate(mwhere)])
    #
    # def getcorr(m):
    #     if len(m):
    #         return np.corrcoef(Aij[np.ix_(m, m)][np.eye(len(m)) == 0],
    #                 Aij[np.ix_(m, m)].T[np.eye(len(m)) == 0])[0, 1]
    #     return 0
    gamma[np.eye(gamma.shape[0]) > 0] = [getcorr(m, m, same=1) for m in mwhere]

    try:
        assert not np.isnan(sigma).any()
    except:
        print 'SIGMA NAN'
        code_debugger()
    gamma[np.isnan(gamma)] = 0
    try:
        assert np.max(np.abs(gamma)) <= 1
    except:
        print '|GAMMA| >1'
        code_debugger()
    if return_all:
        return conn, mu, sigma, sigrow, gamma, Amean, Astd, Asym
    return conn, mu, sigma, sigrow, gamma
Exemplo n.º 35
0
def get_sift_collection(sift, aff=None, bin_color=BLACK, arm1_color=RED,
                        arm2_color=BLACK, arm_alpha=1.0, arm1_lw=1.0,
                        arm2_lw=2.0, circ_alpha=.5, **kwargs):
    """
    Creates a collection of SIFT matplotlib patches

    get_sift_collection

    Args:
        sift (?):
        aff (None):
        bin_color (ndarray):
        arm1_color (ndarray):
        arm2_color (ndarray):
        arm_alpha (float):
        arm1_lw (float):
        arm2_lw (float):
        circ_alpha (float):

    Returns:
        ?: coll_tup

    CommandLine:
        python -m plottool.mpl_sift --test-get_sift_collection

    Example:
        >>> from plottool.mpl_sift import *  # NOQA
        >>> sift = testdata_sifts()[0]
        >>> aff = None
        >>> bin_color = array([ 0.,  0.,  0.,  1.])
        >>> arm1_color = array([ 1.,  0.,  0.,  1.])
        >>> arm2_color = array([ 0.,  0.,  0.,  1.])
        >>> arm_alpha = 1.0
        >>> arm1_lw = 0.5
        >>> arm2_lw = 1.0
        >>> circ_alpha = 0.5
        >>> coll_tup = get_sift_collection(sift, aff, bin_color, arm1_color, arm2_color, arm_alpha, arm1_lw, arm2_lw, circ_alpha)
        >>> print(coll_tup)
    """
    # global offset scale adjustments
    if aff is None:
        aff = mpl.transforms.Affine2D()
    MULTI_COLORED_ARMS = kwargs.pop('multicolored_arms', False)
    _kwarm = kwargs.copy()
    _kwarm.update(dict(head_width=1e-10, length_includes_head=False, transform=aff, color=[1, 1, 0]))
    _kwcirc = dict(transform=aff)
    arm_patches = []
    DSCALE   =  0.25  # Descriptor scale factor
    ARMSCALE =  1.5   # Arm length scale factor
    XYSCALE  =  0.5   # Position scale factor
    XYOFFST  = -0.75  # Position offset
    NORI, NX, NY = 8, 4, 4  # SIFT BIN CONSTANTS
    NBINS = NX * NY
    discrete_ori = (np.arange(0, NORI) * (TAU / NORI))
    # Arm magnitude and orientations
    arm_mag = sift / 255.0
    arm_ori = np.tile(discrete_ori, (NBINS, 1)).flatten()
    # Arm orientation in dxdy format
    arm_dxy = np.array(list(zip(*_cirlce_rad2xy(arm_ori, arm_mag))))
    # Arm locations and dxdy index
    yxt_gen = iprod(range(NY), range(NX), range(NORI))
    # Circle x,y locations
    yx_gen  = iprod(range(NY), range(NX))
    # Draw 8 directional arms in each of the 4x4 grid cells
    arm_args_list = []

    for y, x, t in yxt_gen:
        #print('y=%r, x=%r, t=%r' % (y, x, t))
        index = (y * NX * NORI) + (x * NORI) + (t)
        (dx, dy) = arm_dxy[index]
        arm_x  = (x * XYSCALE) + XYOFFST  # MULTIPLY BY -1 to invert X axis
        arm_y  = (y * XYSCALE) + XYOFFST
        arm_dy = (dy * DSCALE) * ARMSCALE
        arm_dx = (dx * DSCALE) * ARMSCALE
        _args = [arm_x, arm_y, arm_dx, arm_dy]
        arm_args_list.append(_args)

    for _args in arm_args_list:
        arm_patch = mpl.patches.FancyArrow(*_args, **_kwarm)
        arm_patches.append(arm_patch)

    #print('len(arm_patches) = %r' % (len(arm_patches),))
    # Draw circles around each of the 4x4 grid cells
    circle_patches = []
    for y, x in yx_gen:
        circ_xy = (x * XYSCALE + XYOFFST, y * XYSCALE + XYOFFST)
        circ_radius = DSCALE
        circle_patches += [mpl.patches.Circle(circ_xy, circ_radius, **_kwcirc)]

    circ_coll = _circl_collection(circle_patches,  bin_color, circ_alpha)
    arm2_coll = _arm_collection(arm_patches, arm2_color, arm_alpha, arm2_lw)

    if MULTI_COLORED_ARMS:
        # Hack in same colorscheme for arms as the sift bars
        ori_colors = color_fns.distinct_colors(16)
        coll_tup = [circ_coll, arm2_coll]
        coll_tup += [_arm_collection(_, color, arm_alpha, arm1_lw)
                     for _, color in zip(ut.ichunks(arm_patches, 8), ori_colors)]
        coll_tup = tuple(coll_tup)
    else:
        # Just use a single color for all the arms
        arm1_coll = _arm_collection(arm_patches, arm1_color, arm_alpha, arm1_lw)
        coll_tup = (circ_coll, arm2_coll, arm1_coll)
    return coll_tup
Exemplo n.º 36
0
def test_draw_keypoint_main():
    r"""
    CommandLine:
        python -m pyhesaff.tests.test_draw_keypoint --test-test_draw_keypoint_main --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from pyhesaff.tests.test_draw_keypoint import *  # NOQA
        >>> test_draw_keypoint_main()
        >>> ut.show_if_requested()
    """
    from plottool import draw_func2 as df2
    from plottool import mpl_keypoint
    import vtool.keypoint as ktool  # NOQA

    # TODO: Gui tests yield:
    # Jul 13 13:14:53 www.longerdog.com Python[23974] <Error>: This user is not allowed access to the window system right now.
    # don't do window access without --show

    TAU = 2 * np.pi

    # Hack these directions to be relative to gravity
    #RIGHT = ((0 * TAU / 4) - ktool.GRAVITY_THETA) % TAU
    DOWN  = ((1 * TAU / 4) - ktool.GRAVITY_THETA) % TAU
    #LEFT  = ((2 * TAU / 4) - ktool.GRAVITY_THETA) % TAU
    #UP    = ((3 * TAU / 4) - ktool.GRAVITY_THETA) % TAU

    def test_keypoint(xscale=1, yscale=1, ori=DOWN, skew=0):
        # Test Keypoint
        x, y = 0, 0
        iv11, iv21, iv22 = xscale, skew, yscale
        kp = np.array([x, y, iv11, iv21, iv22, ori])

        # Test SIFT descriptor
        sift = np.zeros(128)
        sift[ 0: 8]   = 1
        sift[ 8:16]   = .5
        sift[16:24]   = .0
        sift[24:32]   = .5
        sift[32:40]   = .8
        sift[40:48]   = .8
        sift[48:56]   = .1
        sift[56:64]   = .2
        sift[64:72]   = .3
        sift[72:80]   = .4
        sift[80:88]   = .5
        sift[88:96]   = .6
        sift[96:104]  = .7
        sift[104:112] = .8
        sift[112:120] = .9
        sift[120:128] = 1
        sift = sift / np.sqrt((sift ** 2).sum())
        sift = np.round(sift * 255)

        kpts = np.array([kp])
        sifts = np.array([sift])
        return kpts, sifts

    def square_axis(ax, s=3):
        ax.set_xlim(-s, s)
        ax.set_ylim(-s, s)
        ax.set_aspect('equal')
        ax.invert_yaxis()
        df2.set_xticks([])
        df2.set_yticks([])

    def test_shape(ori=0, skew=0, xscale=1, yscale=1, pnum=(1, 1, 1), fnum=1):
        df2.figure(fnum=fnum, pnum=pnum)
        kpts, sifts = test_keypoint(ori=ori, skew=skew, xscale=xscale, yscale=yscale)
        ax = df2.gca()
        square_axis(ax)
        mpl_keypoint.draw_keypoints(ax, kpts, sifts=sifts, ell_color=df2.ORANGE, ori=True,
                                    rect_color=df2.DARK_RED,
                                    ori_color=df2.DEEP_PINK, eig_color=df2.PINK,
                                    rect=True, eig=True, bin_color=df2.RED,
                                    arm1_color=df2.YELLOW, arm2_color=df2.BLACK)

        kptsstr = '\n'.join(ktool.get_kpts_strs(kpts))
        #print(kptsstr)
        df2.upperleft_text(kptsstr)

        title = 'xyscale=(%.1f, %.1f),\n skew=%.1f, ori=%.2ftau' % (xscale, yscale, skew, ori / TAU)
        df2.set_title(title)
        df2.dark_background()
        return kpts, sifts

    np.set_printoptions(precision=3)

    #THETA1 = DOWN
    #THETA2 = (DOWN + DOWN + RIGHT) / 3
    #THETA3 = (DOWN + RIGHT) / 2
    #THETA4 = (DOWN + RIGHT + RIGHT) / 3
    #THETA5 = RIGHT

    nRows = 2
    nCols = 4

    import plottool as pt
    #pnum_ = pt.pnum_generator(nRows, nCols).next
    pnum_ = pt.pnum_generator(nRows, nCols)

    #def pnum_(px=None):
    #    global px_
    #    if px is None:
    #        px_ += 1
    #        px = px_
    #    return (nRows, nCols, px)

    MIN_ORI = ut.get_argval('--min-ori', float, DOWN)
    MAX_ORI = ut.get_argval('--max-ori', float, DOWN + TAU - .2)

    MIN_X = .5
    MAX_X = 2

    MIN_SWEW = ut.get_argval('--min-skew', float, 0)
    MAX_SKEW = ut.get_argval('--max-skew', float, 1)

    MIN_Y = .5
    MAX_Y = 2

    #kp_list = []

    for row, col in iprod(range(nRows), range(nCols)):
        #print((row, col))
        alpha = col / (nCols)
        beta  = row / (nRows)
        xsca = (MIN_X    * (1 - alpha)) + (MAX_X    * (alpha))
        ori  = (MIN_ORI  * (1 - alpha)) + (MAX_ORI  * (alpha))
        skew = (MIN_SWEW * (1 - beta))  + (MAX_SKEW * (beta))
        ysca = (MIN_Y    * (1 - beta))  + (MAX_Y    * (beta))

        kpts, sifts = test_shape(pnum=six.next(pnum_),
                                 ori=ori,
                                 skew=skew,
                                 xscale=xsca,
                                 yscale=ysca)
def taq_cross_response_year_avg_responses_time_shift_plot(tickers, year,
                                                          shifts):
    """Plots the average of the cross-response average for a year for each
     shift.

    :param tickers: list of strings of the abbreviation of the stock to be
     analized (i.e. ['AAPL', 'MSFT']).
    :param year: string of the year to be analized (i.e '2008')
    :param shifts: list of integers greater than zero (i.e. [1, 10, 50]).
    :return: None -- The function saves the plot in a file and does not return
     a value.
    """

    ticker_couples = list(iprod(tickers, tickers))

    try:
        function_name = \
            taq_cross_response_year_avg_responses_time_shift_plot.__name__

        for shift in shifts:

            figure = plt.figure(figsize=(16, 9))
            avg_val = np.zeros(10000)

            # Figure with the average of different stocks for the same shift
            for couple in ticker_couples:

                ticker_i = couple[0]
                ticker_j = couple[1]

                if (ticker_i == ticker_j):
                    # Self-response
                    pass

                else:

                    # Load data
                    cross = pickle.load(open(''.join((
                                    f'../../taq_data/responses_time_shift_data'
                                    + f'_{year}/taq_cross_response_year'
                                    + f'_responses_time_shift_data_shift'
                                    + f'_{shift}/taq_cross_response_year'
                                    + f'_responses_time_shift_data_shift'
                                    + f'_{shift}_{year}_{ticker_i}i'
                                    + f'_{ticker_j}j.pickle').split()), 'rb'))

                    plt.semilogx(cross, linewidth=3, alpha=0.1,
                                 label=f'{ticker_i}-{ticker_j}')

                    avg_val += cross

            plt.semilogx(avg_val / 30, linewidth=5,
                         label='Average')
            plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=7,
                       fontsize=15)
            plt.title(f'Cross-response - shift {shift}s', fontsize=40)
            plt.xlabel(r'$\tau \, [s]$', fontsize=35)
            plt.ylabel(r'$R_{ij}(\tau)$', fontsize=35)
            plt.xticks(fontsize=25)
            plt.yticks(fontsize=25)
            plt.xlim(1, 10000)
            # plt.ylim(4 * 10 ** -5, 9 * 10 ** -5)
            plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
            plt.grid(True)
            plt.tight_layout()

            # Plotting
            plt.savefig(''.join((
                f'../taq_plot/taq_data_plot_responses_time_shift_average/'
                + f'{function_name}_{shift}.png').split()))

        return None

    except FileNotFoundError as e:
        print('No data')
        print(e)
        print()
        return None
Exemplo n.º 38
0
    def observe(self, dict_in):
        """
        Loads observation model parameters into a dictionary, 
        performs the forward model and provides an initial solution.

        Args:
        dict_in (dict): Dictionary which will be overwritten with 
        all of the observation model parameters, forward model 
        observation 'y', and initial estimate 'x_0'.
        """
        warnings.simplefilter("ignore", np.ComplexWarning)
        #########################################
        #fetch observation model parameters here#
        #########################################

        if (self.str_type[:11] == 'convolution'
                or self.str_type == 'compressed_sensing'):
            wrf = self.get_val('wienerfactor', True)
            str_domain = self.get_val('domain', False)
            noise_pars = defaultdict(int)  #build a dict to generate the noise
            noise_pars['seed'] = self.get_val('seed', True)
            noise_pars['variance'] = self.get_val('noisevariance', True)
            noise_pars['distribution'] = self.get_val('noisedistribution',
                                                      False)
            noise_pars['mean'] = self.get_val('noisemean', True)
            noise_pars['interval'] = self.get_val('noiseinterval',
                                                  True)  #uniform
            noise_pars['size'] = dict_in['x'].shape
            dict_in['noisevariance'] = noise_pars['variance']

            if self.str_type == 'compressed_sensing':
                noise_pars['complex_noise'] = 1
            if dict_in['noisevariance'] > 0:
                dict_in['n'] = noise_gen(noise_pars)
            else:
                dict_in['n'] = 0

        elif self.str_type == 'classification':
            #partition the classification dataset into an 'observed' training set
            #and an unobserved evaluation/test set, and generate features
            dict_in['x_train'] = {}
            dict_in['x_test'] = {}
            dict_in['y_label'] = {}
            dict_in['x_feature'] = {}
            dict_in['n_training_samples'] = 0
            dict_in['n_testing_samples'] = 0
            shuffle = self.get_val('shuffle', True)
            if shuffle:
                shuffleseed = self.get_val('shuffleseed', True)
            training_proportion = self.get_val('trainingproportion', True)
            classes = dict_in['x'].keys()
            #partition and generate numeric class labels
            for _class_index, _class in enumerate(classes):
                class_size = len(dict_in['x'][_class])
                training_size = int(training_proportion * class_size)
                dict_in['n_training_samples'] += training_size
                dict_in['n_testing_samples'] += class_size - training_size
                if shuffle:
                    np.random.seed(shuffleseed)
                    indices = np.random.permutation(class_size)
                else:
                    indices = np.array(range(class_size), dtype='uint16')
                dict_in['x_train'][_class] = indices[:training_size]
                dict_in['x_test'][_class] = indices[training_size:]
                dict_in['y_label'][_class] = _class_index
        else:
            raise ValueError('unsupported observation model')
        ################################################
        #compute the forward model and initial estimate#
        ################################################
        if self.str_type == 'convolution':
            H = self.Phi

            H.set_output_fourier(False)
            dict_in['Hx'] = H * dict_in['x']
            dict_in['y'] = dict_in['Hx'] + dict_in['n']
            #regularized Wiener filtering in Fourier domain
            H.set_output_fourier(True)
            dict_in['x_0'] = real(
                ifftn(~H * dict_in['y'] /
                      (H.get_spectrum_sq() + wrf * noise_pars['variance'])))
            # dict_in['x_0'] = real(ifftn(~H * dict_in['y'])) %testing only
            H.set_output_fourier(False)
            #compute bsnr
            self.compute_bsnr(dict_in, noise_pars)
        elif self.str_type == 'convolution_downsample':
            Phi = self.Phi
            #this order is important in the config file
            D = Phi.ls_ops[1]
            H = Phi.ls_ops[0]
            H.set_output_fourier(False)
            if self.get_val('spatialblur', True):
                dict_in['Phix'] = D * convolve(dict_in['x'], H.kernel, 'same')
                dict_in['Hxpn'] = convolve(dict_in['x'], H.kernel,
                                           'same') + dict_in['n']
            else:
                dict_in['Phix'] = Phi * dict_in['x']
                dict_in['Hxpn'] = H * dict_in['x'] + dict_in['n']
            dict_in['Hx'] = dict_in['Phix']
            #the version of y without downsampling
            dict_in['DHxpn'] = np.zeros((D * dict_in['Hxpn']).shape)
            if dict_in['n'].__class__.__name__ == 'ndarray':
                dict_in['n'] = D * dict_in['n']
            dict_in['y'] = dict_in['Hx'] + dict_in['n']
            DH = fftn(Phi * nd_impulse(dict_in['x'].shape))
            DHt = conj(DH)
            Hty = fftn(D * (~Phi * dict_in['y']))
            HtDtDH = np.real(DHt * DH)
            # dict_in['x_0'] = ~D*real(ifftn(Hty /
            #                                (HtDtDH +
            #                                 wrf * noise_pars['variance'])))
            dict_in['x_0'] = ~D * dict_in['y']
            #optional interpolation
            xdim = dict_in['x'].ndim
            xshp = dict_in['x'].shape
            if self.get_val('interpinitialsolution', True):
                if xdim == 2:
                    if self.get_val('useimresize', True):
                        interp_vals = imresize(
                            dict_in['y'],
                            tuple(D.ds_factor *
                                  np.asarray(dict_in['y'].shape)),
                            interp='bicubic')
                    else:
                        grids = np.mgrid[[
                            slice(0, xshp[j]) for j in xrange(xdim)
                        ]]
                        grids = tuple(
                            [grids[i] for i in xrange(grids.shape[0])])
                        sampled_coords = np.mgrid[[
                            slice(D.offset[j], xshp[j], D.ds_factor[j])
                            for j in xrange(xdim)
                        ]]
                        values = dict_in['x_0'][[
                            coord.flatten() for coord in sampled_coords
                        ]]
                        points = np.vstack([
                            sampled_coords[i, Ellipsis].flatten()
                            for i in xrange(sampled_coords.shape[0])
                        ]).transpose()  #pts to interp
                        interp_vals = griddata(points,
                                               values,
                                               grids,
                                               method='cubic',
                                               fill_value=0.0)
                else:
                    values = dict_in[
                        'y']  #we're not using blank values, different interpolation scheme..
                    dsfactors = np.asarray(
                        [int(D.ds_factor[j]) for j in xrange(values.ndim)])
                    valshpcorrect = (
                        np.asarray(values.shape) -
                        np.asarray(xshp, dtype='uint16') / dsfactors)
                    valshpcorrect = valshpcorrect / np.asarray(dsfactors,
                                                               dtype='float32')
                    interp_coords = iprod(*[
                        np.arange(0, values.shape[j] - valshpcorrect[j], 1.0 /
                                  D.ds_factor[j]) for j in xrange(values.ndim)
                    ])
                    interp_coords = np.array([el for el in interp_coords
                                              ]).transpose()
                    interp_vals = map_coordinates(values,
                                                  interp_coords,
                                                  order=3,
                                                  mode='nearest').reshape(xshp)
                    # interp_vals = map_coordinates(values,interp_coords,order=3,mode='nearest')
                    # cut off the edges
                    # if xdim == 2:
                    # interp_vals = interp_vals[0:xshp[0],0:xshp[1]]
                    # else:
                    interp_vals = interp_vals[0:xshp[0], 0:xshp[1], 0:xshp[2]]
                dict_in['x_0'] = interp_vals
            elif self.get_val('inputinitialsoln', False) != '':
                init_soln_inputsec = Input(
                    self.ps_parameters, self.get_val('inputinitialsoln',
                                                     False))
                dict_in['x_0'] = init_soln_inputsec.read({}, True)
            self.compute_bsnr(dict_in, noise_pars)

        elif self.str_type == 'convolution_poisson':
            dict_in['mp'] = self.get_val('maximumphotonspervoxel', True)
            dict_in['b'] = self.get_val('background', True)
            H = self.Phi
            if str_domain == 'fourier':
                H.set_output_fourier(False)  #return spatial domain object
                orig_shape = dict_in['x'].shape
                Hspec = np.zeros(orig_shape)
                dict_in['r'] = H * dict_in['x']
                k = dict_in['mp'] / nmax(dict_in['r'])
                dict_in['r'] = k * dict_in['r']
                #normalize the output image to have the same
                #maximum photon count as the ouput image
                dict_in['x'] = k * dict_in['x']
                dict_in['x'] = crop_center(
                    dict_in['x'], dict_in['r'].shape).astype('float32')
                #the spatial domain measurements, before photon counts
                dict_in['fb'] = dict_in['r'] + dict_in['b']
                #lambda of the poisson distn
                noise_pars['ary_mean'] = dict_in['fb']
                #specifying the poisson distn
                noise_distn2 = self.get_val('noisedistribution2', False)
                noise_pars['distribution'] = noise_distn2
                #generating quantized (uint16) poisson measurements
                # dict_in['y'] = (noise_gen(noise_pars)+dict_in['n']).astype('uint16').astype('int32')
                dict_in['y'] = noise_gen(noise_pars) + crop_center(
                    dict_in['n'], dict_in['fb'].shape)
                dict_in['y'][dict_in['y'] < 0] = 0
            elif str_domain == 'evaluation':  #are given the observation, which is stored in 'x'
                dict_in['y'] = dict_in.pop('x')
            else:
                raise Exception('domain not supported: ' + str_domain)
            dict_in['x_0'] = ((~H) * (dict_in['y'])).astype(dtype='float32')
            dict_in['y_padded'] = pad_center(dict_in['y'],
                                             dict_in['x_0'].shape)

        elif self.str_type == 'compressed_sensing':
            Fu = self.Phi
            dict_in['Hx'] = Fu * dict_in['x']
            dict_in['y'] = dict_in['Hx'] + dict_in['n']
            dict_in['x_0'] = (~Fu) * dict_in['y']
            dict_in['theta_0'] = angle(dict_in['x_0'])
            dict_in['theta_0'] = su.phase_unwrap(dict_in['theta_0'],
                                                 dict_in['dict_global_lims'],
                                                 dict_in['ls_local_lim_secs'])
            dict_in['magnitude_0'] = nabs(dict_in['x_0'])
            if self.get_val('maskinitialsoln', True):
                dict_in['theta_0'] *= dict_in['mask']
                dict_in['magnitude_0'] *= dict_in['mask']
            dict_in['x_0'] = dict_in['magnitude_0'] * exp(
                1j * dict_in['theta_0'])
            self.compute_bsnr(dict_in, noise_pars)
        #store the wavelet domain version of the ground truth
        if np.iscomplexobj(dict_in['x']):
            dict_in['w'] = [
                self.W * dict_in['x'].real, self.W * dict_in['x'].imag
            ]
        else:
            dict_in['w'] = [self.W * dict_in['x']]
Exemplo n.º 39
0
def epochs_aggregated_dist_returns_market_data(
    dates: List[str], time_step: str, window: str, K_value: str, norm: str = "long"
) -> None:
    """Computes the aggregated distribution of returns for a market.

    :param dates: List of the interval of dates to be analyzed
     (i.e. ['1980-01-01', '2020-12-31']).
    :param time_step: time step of the data (i.e. '1m', '1h', '1d', '1wk',
     '1mo').
    :param window: window time to compute the volatility (i.e. '25').
    :param K_value: number of companies to be used (i.e. '80', 'all').
    :norm: define if the normalization is made in the complete time series or
     in each epoch. Default 'long', 'short' is the other option.
    :return: None -- The function saves the data in a file and does not return
     a value.
    """

    function_name: str = epochs_aggregated_dist_returns_market_data.__name__
    epochs_tools.function_header_print_data(
        function_name, dates, time_step, window, K_value
    )

    try:

        # Load name of the stocks
        if K_value == "all":
            stocks_name: pd.DataFrame = pickle.load(
                open(
                    f"../data/epochs/returns_data_{dates[0]}_{dates[1]}_step"
                    + f"_{time_step}_win__K_.pickle",
                    "rb",
                )
            )[:200]

        else:
            stocks_name = pickle.load(
                open(
                    f"../data/epochs/returns_data_{dates[0]}_{dates[1]}_step"
                    + f"_{time_step}_win__K_.pickle",
                    "rb",
                )
            ).sample(n=int(K_value), axis="columns")

        agg_ret_mkt_list: List[List[float]] = []

        # Combination of stock pairs
        stocks_comb: Iterable[Tuple[Any, ...]] = icomb(stocks_name, 2)
        args_prod: Iterable[Any] = iprod(
            [dates], [time_step], stocks_comb, [window], [norm]
        )

        # Parallel computing
        with mp.Pool(processes=mp.cpu_count()) as pool:
            agg_ret_mkt_list.extend(
                pool.starmap(epochs_aggregated_dist_returns_pair_data, args_prod)
            )

        # Flatten the list
        agg_ret_mkt_list_flat: List[float] = [
            val for sublist in agg_ret_mkt_list for val in sublist
        ]
        agg_ret_mkt_series: pd.Series = pd.Series(agg_ret_mkt_list_flat)

        print(f"mean = {agg_ret_mkt_series.mean()}")
        print(f"std  = {agg_ret_mkt_series.std()}")

        # Saving data
        epochs_tools.save_data(
            agg_ret_mkt_series,
            function_name + "_" + norm,
            dates,
            time_step,
            window,
            K_value,
        )

        del agg_ret_mkt_list
        del agg_ret_mkt_series

    except FileNotFoundError as error:
        print("No data")
        print(error)
        print()
Exemplo n.º 40
0
MAX_ORI = utool.get_argval('--max-ori', float, DOWN + TAU - .2)

MIN_X = .5
MAX_X = 2

MIN_SWEW = utool.get_argval('--min-skew', float, 0)
MAX_SKEW = utool.get_argval('--max-skew', float, 1)

MIN_Y = .5
MAX_Y = 2

kp_list = []

if __name__ == '__main__':

    for row, col in iprod(range(nRows), range(nCols)):
        #print((row, col))
        alpha = col / (nCols)
        beta  = row / (nRows)
        xsca = (MIN_X    * (1 - alpha)) + (MAX_X    * (alpha))
        ori  = (MIN_ORI  * (1 - alpha)) + (MAX_ORI  * (alpha))
        skew = (MIN_SWEW * (1 - beta))  + (MAX_SKEW * (beta))
        ysca = (MIN_Y    * (1 - beta))  + (MAX_Y    * (beta))

        kpts, sifts = test_shape(pnum=pnum_(),
                                 ori=ori,
                                 skew=skew,
                                 xscale=xsca,
                                 yscale=ysca)
    #print('+----')
    #kp_list.append(kpts[0])
Exemplo n.º 41
0
def ranges(*ls):
    return iprod(*[rang(l) for l in ls])