Exemplo n.º 1
0
    def train(self):
        optimizer = ivy.Adam(self._lr, dev_str=self._dev_str)

        for i in range(self._num_iters + 1):

            img_i = np.random.randint(self._images.shape[0])
            target = self._images[img_i]
            cam_geom = self._cam_geoms.slice(img_i)
            rays_o, rays_d = self._get_rays(cam_geom)

            loss, grads = ivy.execute_with_gradients(
                lambda v: self._loss_fn(self._model, rays_o, rays_d, target, v=v), self._model.v)
            self._model.v = optimizer.step(self._model.v, grads)

            if i % self._log_freq == 0 and self._log_freq != -1:
                print('step {}, loss {}'.format(i, ivy.to_numpy(loss).item()))

            if i % self._vis_freq == 0 and self._vis_freq != -1:

                # Render the holdout view for logging
                rays_o, rays_d = self._get_rays(self._test_cam_geom)
                rgb, depth = ivy_vision.render_implicit_features_and_depth(
                    self._model, rays_o, rays_d, near=ivy.ones(self._img_dims, dev_str=self._dev_str) * 2,
                    far=ivy.ones(self._img_dims, dev_str=self._dev_str)*6, samples_per_ray=self._num_samples)
                plt.imsave(os.path.join(self._vis_log_dir, 'img_{}.png'.format(str(i).zfill(3))), ivy.to_numpy(rgb))

        print('Completed Training')
Exemplo n.º 2
0
 def _raw_execute_with_grads(self, network, dev_str, batch, network_v):
     cost, gradients = ivy.execute_with_gradients(
         lambda v: self._compute_cost(network, batch, dev_str, v=network_v.set_at_key_chains(v)),
         network_v.at_key_chains(self._net_spec.v_keychains, ignore_none=True) if
         self._net_spec.keep_v_keychains else
         network_v.prune_key_chains(self._net_spec.v_keychains, ignore_none=True))
     return cost, gradients
Exemplo n.º 3
0
def test_sgd_optimizer(bs_ic_oc_target, with_v, dtype_str, tensor_fn, dev_str,
                       call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    batch_shape, input_channels, output_channels, target = bs_ic_oc_target
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    if with_v:
        np.random.seed(0)
        wlim = (6 / (output_channels + input_channels))**0.5
        w = ivy.variable(
            ivy.array(
                np.random.uniform(-wlim, wlim,
                                  (output_channels, input_channels)),
                'float32'))
        b = ivy.variable(ivy.zeros([output_channels]))
        v = Container({'w': w, 'b': b})
    else:
        v = None
    linear_layer = ivy.Linear(input_channels, output_channels, v=v)

    def loss_fn(v_):
        out = linear_layer(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # optimizer
    optimizer = ivy.SGD()

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, linear_layer.v)
        linear_layer.v = optimizer.step(linear_layer.v, grads)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    assert ivy.reduce_max(ivy.abs(grads.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.w)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not **kwargs
        return
    helpers.assert_compilable(loss_fn)
Exemplo n.º 4
0
def main(interactive=True, try_use_sim=True, f=None):

    # config
    this_dir = os.path.dirname(os.path.realpath(__file__))
    f = choose_random_framework(excluded=['numpy']) if f is None else f
    set_framework(f)
    sim = Simulator(interactive, try_use_sim)
    lr = 0.5
    num_anchors = 3
    num_sample_points = 100

    # spline start
    anchor_points = ivy.cast(
        ivy.expand_dims(ivy.linspace(0, 1, 2 + num_anchors), -1), 'float32')
    query_points = ivy.cast(
        ivy.expand_dims(ivy.linspace(0, 1, num_sample_points), -1), 'float32')

    # learnable parameters
    robot_start_config = ivy.array(ivy.cast(sim.robot_start_config, 'float32'))
    robot_target_config = ivy.array(
        ivy.cast(sim.robot_target_config, 'float32'))
    learnable_anchor_vals = ivy.variable(
        ivy.cast(
            ivy.transpose(
                ivy.linspace(robot_start_config, robot_target_config,
                             2 + num_anchors)[..., 1:-1], (1, 0)), 'float32'))

    # optimizer
    optimizer = ivy.SGD(lr=lr)

    # optimize
    it = 0
    colliding = True
    clearance = 0
    joint_query_vals = None
    while colliding:
        total_cost, grads, joint_query_vals, link_positions, sdf_vals = ivy.execute_with_gradients(
            lambda xs: compute_cost_and_sdfs(xs[
                'w'], anchor_points, robot_start_config, robot_target_config,
                                             query_points, sim),
            Container({'w': learnable_anchor_vals}))
        colliding = ivy.reduce_min(sdf_vals[2:]) < clearance
        sim.update_path_visualization(
            link_positions, sdf_vals,
            os.path.join(this_dir, 'msp_no_sim', 'path_{}.png'.format(it)))
        learnable_anchor_vals = optimizer.step(
            Container({'w': learnable_anchor_vals}), grads)['w']
        it += 1
    sim.execute_motion(joint_query_vals)
    sim.close()
    unset_framework()
Exemplo n.º 5
0
def test_execute_with_gradients(func_n_xs_n_ty_n_te_n_tg, dtype_str, tensor_fn,
                                dev_str, call):
    # smoke test
    func, xs_raw, true_y, true_extra, true_dydxs = func_n_xs_n_ty_n_te_n_tg
    xs = xs_raw.map(lambda x, _: ivy.variable(ivy.array(x)))
    if true_extra is None:
        y, dydxs = ivy.execute_with_gradients(func, xs)
        extra_out = None
    else:
        y, dydxs, extra_out = ivy.execute_with_gradients(func, xs)
    # type test
    assert ivy.is_array(y) or isinstance(y, Number)
    if call is not helpers.np_call:
        assert isinstance(dydxs, dict)
    # cardinality test
    if call is not helpers.mx_call:
        # mxnet cannot slice array down to shape (), it remains fixed at size (1,)
        assert y.shape == true_y.shape
    if call is not helpers.np_call:
        for (g, g_true) in zip(dydxs.values(), true_dydxs.values()):
            assert g.shape == g_true.shape
    # value test
    xs = xs_raw.map(lambda x, _: ivy.variable(ivy.array(x)))
    if true_extra is None:
        y, dydxs = call(ivy.execute_with_gradients, func, xs)
    else:
        y, dydxs, extra_out = call(ivy.execute_with_gradients, func, xs)
    assert np.allclose(y, true_y)
    if true_extra:
        assert np.allclose(extra_out, true_extra)
    if call is helpers.np_call:
        # numpy doesn't support autodiff
        assert dydxs is None
    else:
        for (g, g_true) in zip(dydxs.values(), true_dydxs.values()):
            assert np.allclose(ivy.to_numpy(g), g_true)
Exemplo n.º 6
0
def train_step(loss_fn_in, optimizer, ntm, total_seq, target_seq, seq_len, mw,
               vw, step, max_grad_norm):
    # compute loss
    loss, dldv, pred_vals = ivy.execute_with_gradients(
        lambda v_: loss_fn_in(v_, total_seq, target_seq, seq_len), ntm.v)

    global_norm = ivy.reduce_sum(
        ivy.stack([ivy.reduce_sum(grad**2) for grad in dldv.to_flat_list()],
                  0))**0.5
    dldv = dldv.map(lambda x, _: x * max_grad_norm / ivy.maximum(
        global_norm, max_grad_norm))

    # update variables
    ntm.v = optimizer.step(ntm.v, dldv)
    return loss, pred_vals
Exemplo n.º 7
0
def test_module_training(bs_ic_oc, dev_str, call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    batch_shape, input_channels, output_channels = bs_ic_oc
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    module = TrainableModule(input_channels, output_channels)

    def loss_fn(v_):
        out = module(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, module.v)
        module.v = ivy.gradient_descent_update(module.v, grads, 1e-3)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    assert ivy.reduce_max(ivy.abs(grads.linear0.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear0.w)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear1.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear1.w)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear2.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear2.w)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not support **kwargs
        return
    helpers.assert_compilable(loss_fn)
Exemplo n.º 8
0
def test_lstm_layer_training(b_t_ic_hc_otf_sctv, with_v, dtype_str, tensor_fn,
                             dev_str, call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    # smoke test
    b, t, input_channels, hidden_channels, output_true_flat, state_c_true_val = b_t_ic_hc_otf_sctv
    x = ivy.cast(
        ivy.linspace(ivy.zeros([b, t]), ivy.ones([b, t]), input_channels),
        'float32')
    if with_v:
        kernel = ivy.variable(
            ivy.ones([input_channels, 4 * hidden_channels]) * 0.5)
        recurrent_kernel = ivy.variable(
            ivy.ones([hidden_channels, 4 * hidden_channels]) * 0.5)
        v = Container({
            'input': {
                'layer_0': {
                    'w': kernel
                }
            },
            'recurrent': {
                'layer_0': {
                    'w': recurrent_kernel
                }
            }
        })
    else:
        v = None
    lstm_layer = ivy.LSTM(input_channels, hidden_channels, v=v)

    def loss_fn(v_):
        out, (state_h, state_c) = lstm_layer(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, lstm_layer.v)
        lstm_layer.v = ivy.gradient_descent_update(lstm_layer.v, grads, 1e-3)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    for key, val in grads.to_iterator():
        assert ivy.reduce_max(ivy.abs(val)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not **kwargs
        return
    helpers.assert_compilable(loss_fn)
Exemplo n.º 9
0
def train_step(compiled_loss_fn, optimizer, initial_state, policy, f):
    loss, grads = ivy.execute_with_gradients(lambda pol_vs: compiled_loss_fn(initial_state, pol_vs), policy.v)
    policy.v = optimizer.step(policy.v, grads)
    return -f.reshape(loss, (1,))
Exemplo n.º 10
0
def main():

    # LSTM #
    # -----#

    # using the Ivy LSTM memory module, dual stacked, in a PyTorch model

    class TorchModelWithLSTM(torch.nn.Module):
        def __init__(self, channels_in, channels_out):
            torch.nn.Module.__init__(self)
            self._linear = torch.nn.Linear(channels_in, 64)
            self._lstm = ivy_mem.LSTM(64, channels_out, 2, return_state=False)
            self._assign_variables()

        def _assign_variables(self):
            self._lstm.v.map(lambda x, kc: self.register_parameter(
                name=kc, param=torch.nn.Parameter(x)))
            self._lstm.v = self._lstm.v.map(lambda x, kc: self._parameters[kc])

        def forward(self, x):
            x = self._linear(x)
            return self._lstm(x)

    # create model
    in_channels = 32
    out_channels = 8
    ivy.set_framework('torch')
    model = TorchModelWithLSTM(in_channels, out_channels)

    # define inputs
    batch_shape = [1, 2]
    timesteps = 3
    input_shape = batch_shape + [timesteps, in_channels]
    input_seq = torch.rand(batch_shape + [timesteps, in_channels])

    # call model and test output
    output_seq = model(input_seq)
    assert input_seq.shape[:-1] == output_seq.shape[:-1]
    assert input_seq.shape[-1] == in_channels
    assert output_seq.shape[-1] == out_channels

    # define loss function
    target = torch.zeros_like(output_seq)

    def loss_fn():
        pred = model(input_seq)
        return torch.sum((pred - target)**2)

    # define optimizer
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

    # train model
    print('\ntraining dummy PyTorch LSTM model...\n')
    for i in range(10):
        loss = loss_fn()
        loss.backward()
        optimizer.step()
        print('step {}, loss = {}'.format(i, loss))
    print('\ndummy PyTorch LSTM model trained!\n')
    ivy.unset_framework()

    # NTM #
    # ----#

    # using the Ivy NTM memory module in a TensorFlow model

    class TfModelWithNTM(tf.keras.Model):
        def __init__(self, channels_in, channels_out):
            tf.keras.Model.__init__(self)
            self._linear = tf.keras.layers.Dense(64)
            memory_size = 4
            memory_vector_dim = 1
            self._ntm = ivy_mem.NTM(input_dim=64,
                                    output_dim=channels_out,
                                    ctrl_output_size=channels_out,
                                    ctrl_layers=1,
                                    memory_size=memory_size,
                                    memory_vector_dim=memory_vector_dim,
                                    read_head_num=1,
                                    write_head_num=1)
            self._assign_variables()

        def _assign_variables(self):
            self._ntm.v.map(
                lambda x, kc: self.add_weight(name=kc, shape=x.shape))
            self.set_weights(
                [ivy.to_numpy(v) for k, v in self._ntm.v.to_iterator()])
            self.trainable_weights_dict = dict()
            for weight in self.trainable_weights:
                self.trainable_weights_dict[weight.name] = weight
            self._ntm.v = self._ntm.v.map(
                lambda x, kc: self.trainable_weights_dict[kc + ':0'])

        def call(self, x, **kwargs):
            x = self._linear(x)
            return self._ntm(x)

    # create model
    in_channels = 32
    out_channels = 8
    ivy.set_framework('tensorflow')
    model = TfModelWithNTM(in_channels, out_channels)

    # define inputs
    batch_shape = [1, 2]
    timesteps = 3
    input_shape = batch_shape + [timesteps, in_channels]
    input_seq = tf.random.uniform(batch_shape + [timesteps, in_channels])

    # call model and test output
    output_seq = model(input_seq)
    assert input_seq.shape[:-1] == output_seq.shape[:-1]
    assert input_seq.shape[-1] == in_channels
    assert output_seq.shape[-1] == out_channels

    # define loss function
    target = tf.zeros_like(output_seq)

    def loss_fn():
        pred = model(input_seq)
        return tf.reduce_sum((pred - target)**2)

    # define optimizer
    optimizer = tf.keras.optimizers.Adam(1e-2)

    # train model
    print('\ntraining dummy TensorFlow NTM model...\n')
    for i in range(10):
        with tf.GradientTape() as tape:
            loss = loss_fn()
        grads = tape.gradient(loss, model.trainable_weights)
        optimizer.apply_gradients(zip(grads, model.trainable_weights))
        print('step {}, loss = {}'.format(i, loss))
    print('\ndummy TensorFlow NTM model trained!\n')
    ivy.unset_framework()

    # ESM #
    # ----#

    # using the Ivy ESM memory module in a pure-Ivy model, with a JAX backend
    # ToDo: add pre-ESM conv layers to this demo

    class IvyModelWithESM(ivy.Module):
        def __init__(self, channels_in, channels_out):
            self._channels_in = channels_in
            self._esm = ivy_mem.ESM(omni_image_dims=(16, 32))
            self._linear = ivy_mem.Linear(channels_in, channels_out)
            ivy.Module.__init__(self, 'cpu')

        def _forward(self, obs):
            mem = self._esm(obs)
            x = ivy.reshape(mem.mean, (-1, self._channels_in))
            return self._linear(x)

    # create model
    in_channels = 32
    out_channels = 8
    ivy.set_framework('torch')
    model = IvyModelWithESM(in_channels, out_channels)

    # input config
    batch_size = 1
    image_dims = [5, 5]
    num_timesteps = 2
    num_feature_channels = 3

    # create image of pixel co-ordinates
    uniform_pixel_coords =\
        ivy_vision.create_uniform_pixel_coords_image(image_dims, [batch_size, num_timesteps])

    # define camera measurement
    depths = ivy.random_uniform(shape=[batch_size, num_timesteps] +
                                image_dims + [1])
    ds_pixel_coords = ivy_vision.depth_to_ds_pixel_coords(depths)
    inv_calib_mats = ivy.random_uniform(
        shape=[batch_size, num_timesteps, 3, 3])
    cam_coords = ivy_vision.ds_pixel_to_cam_coords(ds_pixel_coords,
                                                   inv_calib_mats)[..., 0:3]
    features = ivy.random_uniform(shape=[batch_size, num_timesteps] +
                                  image_dims + [num_feature_channels])
    img_mean = ivy.concatenate((cam_coords, features), -1)
    cam_rel_mat = ivy.identity(4, batch_shape=[batch_size,
                                               num_timesteps])[..., 0:3, :]

    # place these into an ESM camera measurement container
    esm_cam_meas = ESMCamMeasurement(img_mean=img_mean,
                                     cam_rel_mat=cam_rel_mat)

    # define agent pose transformation
    agent_rel_mat = ivy.identity(4, batch_shape=[batch_size,
                                                 num_timesteps])[..., 0:3, :]

    # collect together into an ESM observation container
    esm_obs = ESMObservation(img_meas={'camera_0': esm_cam_meas},
                             agent_rel_mat=agent_rel_mat)

    # call model and test output
    output = model(esm_obs)
    assert output.shape[-1] == out_channels

    # define loss function
    target = ivy.zeros_like(output)

    def loss_fn(v):
        pred = model(esm_obs, v=v)
        return ivy.reduce_mean((pred - target)**2)

    # optimizer
    optimizer = ivy.SGD(lr=1e-4)

    # train model
    print('\ntraining dummy Ivy ESM model...\n')
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, model.v)
        model.v = optimizer.step(model.v, grads)
        print('step {}, loss = {}'.format(i, ivy.to_numpy(loss).item()))
    print('\ndummy Ivy ESM model trained!\n')
    ivy.unset_framework()

    # message
    print('End of Run Through Demo!')