Exemplo n.º 1
0
 def is_skolem(self, sym):
     res = itr.is_skolem(sym) and not (sym.name.startswith('__')
                                       and sym.name[2:3].isupper())
     # if not res and self.top_level:
     #     name = sym.name
     #     res = name.startswith('loc:') or name.startswith('fml:')
     return res
Exemplo n.º 2
0
    def handle(self,action,env):
        
#        iu.dbg('env')
        if hasattr(action,'lineno'):
#            print '        env: {}'.format('{'+','.join('{}:{}'.format(x,y) for x,y in env.iteritems())+'}')
#            inv_env = dict((y,x) for x,y in env.iteritems())
            if not self.started:
                for sym in self.vocab:
                    if sym not in env and not itr.is_new(sym) and not itr.is_skolem(sym):
                        self.show_sym(sym,sym)
                self.started = True
            for sym,renamed_sym in env.iteritems():
                if not itr.is_new(sym) and not itr.is_skolem(sym):
                    self.show_sym(sym,renamed_sym)

            print '{}{}'.format(action.lineno,action)
Exemplo n.º 3
0
def mine_constants(mod,trans,invariant):
    res = defaultdict(list)
    for c in ilu.used_symbols_ast(invariant):
        if not il.is_function_sort(c.sort) and tr.is_skolem(c):
            res[c.sort].append(c)
#    iu.dbg('res')
    return res
Exemplo n.º 4
0
def prev_expr(stvarset,expr,sort_constants):
    if any(sym in stvarset or tr.is_skolem(sym) and not sym in sort_constants[sym.sort]
           for sym in ilu.symbols_ast(expr)):
        return None
    news = [sym for sym in ilu.used_symbols_ast(expr) if tr.is_new(sym)]
    if news:
        rn = dict((sym,tr.new_of(sym)) for sym in news)
        return ilu.rename_ast(expr,rn)
    return None        
Exemplo n.º 5
0
    def get_predicates(self,clauses):
#        print "get_predicates: {}".format(clauses)
        d = self.parent_state.domain
        sig = d.sig
        urs = [x for x in used_unary_relations_clauses(clauses) if not is_skolem(x)]
        cs = [x for x in used_constants_clauses(clauses)
              if not is_skolem(x) and not has_enumerated_sort(sig,x) and not x.is_numeral()]
        ufs = [x for x in used_unary_functions_clauses(clauses)
               if not is_skolem(x) and  has_enumerated_sort(sig,x)]
        nrs = [x for x,arity in d.relations.iteritems() if arity == 0]
        union_to_list(urs,[x for x,arity in d.relations.iteritems() if arity == 1])
        union_to_list(cs,[x for x,arity in d.functions.iteritems()
                          if arity == 0 and not has_enumerated_sort(sig,x)])
        union_to_list(ufs,[x for x,arity in d.functions.iteritems()
                           if arity == 1 and has_enumerated_sort(sig,x)])
#        print "ufs: {}".format(ufs)
        ccs = [Constant(c) for c in cs]
#        print "sorts: {}".format([(c,c.get_sort()) for c in ccs])
        return ([Literal(1,Atom(c,[])) for c in nrs] +
                [Literal(1,Atom(equals,[Variable("X",c.get_sort()),c])) for c in ccs] +
                [Literal(1,Atom(r,[Variable("X",r.sort.dom[0])])) for r in urs] +
                [(App(f,Variable('X',f.sort.dom[0])),[Constant(Symbol(x,f.sort.rng)) for x in f.sort.rng.defines()]) for f in ufs])
Exemplo n.º 6
0
 def get_predicates(self, clauses):
     #        print "get_predicates: {}".format(clauses)
     d = self.parent_state.domain
     sig = d.sig
     urs = [
         x for x in used_unary_relations_clauses(clauses)
         if not is_skolem(x)
     ]
     cs = [
         x for x in used_constants_clauses(clauses) if not is_skolem(x)
         and not has_enumerated_sort(sig, x) and not x.is_numeral()
     ]
     ufs = [
         x for x in used_unary_functions_clauses(clauses)
         if not is_skolem(x) and has_enumerated_sort(sig, x)
     ]
     nrs = [x for x, arity in d.relations.iteritems() if arity == 0]
     union_to_list(
         urs, [x for x, arity in d.relations.iteritems() if arity == 1])
     union_to_list(cs, [
         x for x, arity in d.functions.iteritems()
         if arity == 0 and not has_enumerated_sort(sig, x)
     ])
     union_to_list(ufs, [
         x for x, arity in d.functions.iteritems()
         if arity == 1 and has_enumerated_sort(sig, x)
     ])
     #        print "ufs: {}".format(ufs)
     ccs = [Constant(c) for c in cs]
     #        print "sorts: {}".format([(c,c.get_sort()) for c in ccs])
     return ([Literal(1, Atom(c, [])) for c in nrs] + [
         Literal(1, Atom(equals, [Variable("X", c.get_sort()), c]))
         for c in ccs
     ] + [Literal(1, Atom(r, [Variable("X", r.sort.dom[0])]))
          for r in urs] + [(App(f, Variable('X', f.sort.dom[0])), [
              Constant(Symbol(x, f.sort.rng)) for x in f.sort.rng.defines()
          ]) for f in ufs])
Exemplo n.º 7
0
 def is_skolem(self, sym):
     res = itr.is_skolem(sym) and not (sym.name.startswith('__')
                                       and sym.name[2:3].isupper())
     return res
Exemplo n.º 8
0
 def end(self):
     for sym in self.vocab:
         if not itr.is_new(sym) and not itr.is_skolem(sym):
             self.show_sym(sym,sym)
Exemplo n.º 9
0
def to_aiger(mod,ext_act):

    erf = il.Symbol('err_flag',il.find_sort('bool'))
    errconds = []
    add_err_flag_mod(mod,erf,errconds)

    # we use a special state variable __init to indicate the initial state

    ext_acts = [mod.actions[x] for x in sorted(mod.public_actions)]
    ext_act = ia.EnvAction(*ext_acts)

    init_var = il.Symbol('__init',il.find_sort('bool')) 
    init = add_err_flag(ia.Sequence(*([a for n,a in mod.initializers]+[ia.AssignAction(init_var,il.And())])),erf,errconds)
    action = ia.Sequence(ia.AssignAction(erf,il.Or()),ia.IfAction(init_var,ext_act,init))
    
    # get the invariant to be proved, replacing free variables with
    # skolems. First, we apply any proof tactics.

    pc = ivy_proof.ProofChecker(mod.axioms,mod.definitions,mod.schemata)
    pmap = dict((lf.id,p) for lf,p in mod.proofs)
    conjs = []
    for lf in mod.labeled_conjs:
        if lf.id in pmap:
            proof = pmap[lf.id]
            subgoals = pc.admit_proposition(lf,proof)
            conjs.extend(subgoals)
        else:
            conjs.append(lf)

    invariant = il.And(*[il.drop_universals(lf.formula) for lf in conjs])
#    iu.dbg('invariant')
    skolemizer = lambda v: ilu.var_to_skolem('__',il.Variable(v.rep,v.sort))
    vs = ilu.used_variables_in_order_ast(invariant)
    sksubs = dict((v.rep,skolemizer(v)) for v in vs)
    invariant = ilu.substitute_ast(invariant,sksubs)
    invar_syms = ilu.used_symbols_ast(invariant)
    
    # compute the transition relation

    stvars,trans,error = action.update(mod,None)
    

#    print 'action : {}'.format(action)
#    print 'annotation: {}'.format(trans.annot)
    annot = trans.annot
#    match_annotation(action,annot,MatchHandler())
    
    indhyps = [il.close_formula(il.Implies(init_var,lf.formula)) for lf in mod.labeled_conjs]
#    trans = ilu.and_clauses(trans,indhyps)

    # save the original symbols for trace
    orig_syms = ilu.used_symbols_clauses(trans)
    orig_syms.update(ilu.used_symbols_ast(invariant))
                     
    # TODO: get the axioms (or maybe only the ground ones?)

    # axioms = mod.background_theory()

    # rn = dict((sym,tr.new(sym)) for sym in stvars)
    # next_axioms = ilu.rename_clauses(axioms,rn)
    # return ilu.and_clauses(axioms,next_axioms)

    funs = set()
    for df in trans.defs:
        funs.update(ilu.used_symbols_ast(df.args[1]))
    for fmla in trans.fmlas:
        funs.update(ilu.used_symbols_ast(fmla))
#   funs = ilu.used_symbols_clauses(trans)
    funs.update(ilu.used_symbols_ast(invariant))
    funs = set(sym for sym in funs if  il.is_function_sort(sym.sort))
    iu.dbg('[str(fun) for fun in funs]')

    # Propositionally abstract

    # step 1: get rid of definitions of non-finite symbols by turning
    # them into constraints

    new_defs = []
    new_fmlas = []
    for df in trans.defs:
        if len(df.args[0].args) == 0 and is_finite_sort(df.args[0].sort):
            new_defs.append(df)
        else:
            fmla = df.to_constraint()
            new_fmlas.append(fmla)
    trans = ilu.Clauses(new_fmlas+trans.fmlas,new_defs)

    # step 2: get rid of ite's over non-finite sorts, by introducing constraints

    cnsts = []
    new_defs = [elim_ite(df,cnsts) for df in trans.defs]
    new_fmlas = [elim_ite(fmla,cnsts) for fmla in trans.fmlas]
    trans = ilu.Clauses(new_fmlas+cnsts,new_defs)
    
    # step 3: eliminate quantfiers using finite instantiations

    from_asserts = il.And(*[il.Equals(x,x) for x in ilu.used_symbols_ast(il.And(*errconds)) if
                            tr.is_skolem(x) and not il.is_function_sort(x.sort)])
    iu.dbg('from_asserts')
    invar_syms.update(ilu.used_symbols_ast(from_asserts))
    sort_constants = mine_constants(mod,trans,il.And(invariant,from_asserts))
    sort_constants2 = mine_constants2(mod,trans,invariant)
    print '\ninstantiations:'
    trans,invariant = Qelim(sort_constants,sort_constants2)(trans,invariant,indhyps)
    
    
#    print 'after qe:'
#    print 'trans: {}'.format(trans)
#    print 'invariant: {}'.format(invariant)

    # step 4: instantiate the axioms using patterns

    # We have to condition both the transition relation and the
    # invariant on the axioms, so we define a boolean symbol '__axioms'
    # to represent the axioms.

    axs = instantiate_axioms(mod,stvars,trans,invariant,sort_constants,funs)
    ax_conj = il.And(*axs)
    ax_var = il.Symbol('__axioms',ax_conj.sort)
    ax_def = il.Definition(ax_var,ax_conj)
    invariant = il.Implies(ax_var,invariant)
    trans = ilu.Clauses(trans.fmlas+[ax_var],trans.defs+[ax_def])
    
    # step 5: eliminate all non-propositional atoms by replacing with fresh booleans
    # An atom with next-state symbols is converted to a next-state symbol if possible

    stvarset = set(stvars)
    prop_abs = dict()  # map from atoms to proposition variables
    global prop_abs_ctr  # sigh -- python lameness
    prop_abs_ctr = 0   # counter for fresh symbols
    new_stvars = []    # list of fresh symbols

    # get the propositional abstraction of an atom
    def new_prop(expr):
        res = prop_abs.get(expr,None)
        if res is None:
            prev = prev_expr(stvarset,expr,sort_constants)
            if prev is not None:
#                print 'stvar: old: {} new: {}'.format(prev,expr)
                pva = new_prop(prev)
                res = tr.new(pva)
                new_stvars.append(pva)
                prop_abs[expr] = res  # prevent adding this again to new_stvars
            else:
                global prop_abs_ctr
                res = il.Symbol('__abs[{}]'.format(prop_abs_ctr),expr.sort)
#                print '{} = {}'.format(res,expr)
                prop_abs[expr] = res
                prop_abs_ctr += 1
        return res

    # propositionally abstract an expression
    global mk_prop_fmlas
    mk_prop_fmlas = []
    def mk_prop_abs(expr):
        if il.is_quantifier(expr) or len(expr.args) > 0 and any(not is_finite_sort(a.sort) for a in expr.args):
            return new_prop(expr)
        return expr.clone(map(mk_prop_abs,expr.args))

    
    # apply propositional abstraction to the transition relation
    new_defs = map(mk_prop_abs,trans.defs)
    new_fmlas = [mk_prop_abs(il.close_formula(fmla)) for fmla in trans.fmlas]

    # find any immutable abstract variables, and give them a next definition

    def my_is_skolem(x):
        res = tr.is_skolem(x) and x not in invar_syms
        return res    
    def is_immutable_expr(expr):
        res = not any(my_is_skolem(sym) or tr.is_new(sym) or sym in stvarset for sym in ilu.used_symbols_ast(expr))
        return res
    for expr,v in prop_abs.iteritems():
        if is_immutable_expr(expr):
            new_stvars.append(v)
            print 'new state: {}'.format(expr)
            new_defs.append(il.Definition(tr.new(v),v))

    trans = ilu.Clauses(new_fmlas+mk_prop_fmlas,new_defs)

    # apply propositional abstraction to the invariant
    invariant = mk_prop_abs(invariant)

    # create next-state symbols for atoms in the invariant (is this needed?)
    rn = dict((sym,tr.new(sym)) for sym in stvars)
    mk_prop_abs(ilu.rename_ast(invariant,rn))  # this is to pick up state variables from invariant

    # update the state variables by removing the non-finite ones and adding the fresh state booleans
    stvars = [sym for sym in stvars if is_finite_sort(sym.sort)] + new_stvars

#    iu.dbg('trans')
#    iu.dbg('stvars')
#    iu.dbg('invariant')
#    exit(0)

    # For each state var, create a variable that corresponds to the input of its latch
    # Also, havoc all the state bits except the init flag at the initial time. This
    # is needed because in aiger, all latches start at 0!

    def fix(v):
        return v.prefix('nondet')
    def curval(v):
        return v.prefix('curval')
    def initchoice(v):
        return v.prefix('initchoice')
    stvars_fix_map = dict((tr.new(v),fix(v)) for v in stvars)
    stvars_fix_map.update((v,curval(v)) for v in stvars if v != init_var)
    trans = ilu.rename_clauses(trans,stvars_fix_map)
#    iu.dbg('trans')
    new_defs = trans.defs + [il.Definition(ilu.sym_inst(tr.new(v)),ilu.sym_inst(fix(v))) for v in stvars]
    new_defs.extend(il.Definition(curval(v),il.Ite(init_var,v,initchoice(v))) for v in stvars if  v != init_var)
    trans = ilu.Clauses(trans.fmlas,new_defs)
    
    # Turn the transition constraint into a definition
    
    cnst_var = il.Symbol('__cnst',il.find_sort('bool'))
    new_defs = list(trans.defs)
    new_defs.append(il.Definition(tr.new(cnst_var),fix(cnst_var)))
    new_defs.append(il.Definition(fix(cnst_var),il.Or(cnst_var,il.Not(il.And(*trans.fmlas)))))
    stvars.append(cnst_var)
    trans = ilu.Clauses([],new_defs)
    
    # Input are all the non-defined symbols. Output indicates invariant is false.

#    iu.dbg('trans')
    def_set = set(df.defines() for df in trans.defs)
    def_set.update(stvars)
#    iu.dbg('def_set')
    used = ilu.used_symbols_clauses(trans)
    used.update(ilu.symbols_ast(invariant))
    inputs = [sym for sym in used if
              sym not in def_set and not il.is_interpreted_symbol(sym)]
    fail = il.Symbol('__fail',il.find_sort('bool'))
    outputs = [fail]
    

#    iu.dbg('trans')
    
    # make an aiger

    aiger = Encoder(inputs,stvars,outputs)
    comb_defs = [df for df in trans.defs if not tr.is_new(df.defines())]

    invar_fail = il.Symbol('invar__fail',il.find_sort('bool'))  # make a name for invariant fail cond
    comb_defs.append(il.Definition(invar_fail,il.Not(invariant)))

    aiger.deflist(comb_defs)
    for df in trans.defs:
        if tr.is_new(df.defines()):
            aiger.set(tr.new_of(df.defines()),aiger.eval(df.args[1]))
    miter = il.And(init_var,il.Not(cnst_var),il.Or(invar_fail,il.And(fix(erf),il.Not(fix(cnst_var)))))
    aiger.set(fail,aiger.eval(miter))

#    aiger.sub.debug()

    # make a decoder for the abstract propositions

    decoder = dict((y,x) for x,y in prop_abs.iteritems())
    for sym in aiger.inputs + aiger.latches:
        if sym not in decoder and sym in orig_syms:
            decoder[sym] = sym

    cnsts = set(sym for syms in sort_constants.values() for sym in syms)
    return aiger,decoder,annot,cnsts,action,stvarset
Exemplo n.º 10
0
 def my_is_skolem(x):
     return tr.is_skolem(x) and x not in self.cnsts
Exemplo n.º 11
0
 def my_is_skolem(x):
     res = tr.is_skolem(x) and x not in invar_syms
     return res    
Exemplo n.º 12
0
    axioms = state.domain.background_theory(state.in_scope)
    error = tr.reverse_image([], err_act)
    print "error = {}".format(error)

    # get actions as updates
    updates = [action.update(ag.domain, state.in_scope) for action in actions]

    # get all the flexible (updated) variables
    flex = set(sym for u in updates for sym in u[0])
    print "flex = {}".format(flex)

    # inflex is all non-skolem symbols in signature that are not updated
    all_syms = sig.symbols
    inflex = set(
        sym for sym in all_syms
        if sym not in flex and not tr.is_new(sym) and not tr.is_skolem(sym))
    print "inflex = {}".format(inflex)

    # get all the skolem symbols
    all_syms = sig.symbols
    skolems = set(sym for sym in all_syms if tr.is_skolem(sym))
    print "skolems = {}".format(skolems)

    # make frames explicit
    updates = [tr.frame_update(u, flex, sig) for u in updates]
    for u in updates:
        print u

    # locals are flexible and skolem symbols (next values unused for skolems)
    ns = sv.native_symbol
    #lsyms = [(ns(sym),ns(tr.new(sym))) for sym in chain(flex,skolems)]
Exemplo n.º 13
0
    err_act = ag.actions["error"].update(ag.domain,state.in_scope)
    axioms = state.domain.background_theory(state.in_scope)
    error = tr.reverse_image([],axioms,err_act)
    print "error = {}".format(error)

    # get actions as updates
    updates = [action.update(ag.domain,state.in_scope) for action in actions]

    # get all the flexible (updated) variables
    flex = set(sym for u in updates for sym in u[0])
    print "flex = {}".format(flex)

    # inflex is all non-skolem symbols in signature that are not updated
    all_syms = sig.symbols
    inflex = set(sym for sym in all_syms if sym not in flex and not tr.is_new(sym) and not tr.is_skolem(sym))
    print "inflex = {}".format(inflex)

    # get all the skolem symbols
    all_syms = sig.symbols
    skolems = set(sym for sym in all_syms if tr.is_skolem(sym))
    print "skolems = {}".format(skolems)

    # make frames explicit
    updates = [tr.frame_update(u,flex,sig) for u in updates]
    for u in updates:
        print u

    # locals are flexible and skolem symbols (next values unused for skolems)
    ns = sv.native_symbol
    #lsyms = [(ns(sym),ns(tr.new(sym))) for sym in chain(flex,skolems)]