def main(): logger.enable(__name__) processor = Jamboree() example_handler = ExampleSearchHandler() example_handler.processor = processor example_handler["name"] = "Boi Gurl" example_handler["category"] = "marketsx" example_handler["sample_tags"] = ["four", "five", "six"] # TODO: Figure out subcategory update example_handler["subcategories"] = { "hello": "world", "country": "US", } example_handler["secondsub"] = {"my": "jac"} example_handler.replacement["secondsub"] = {"my": "jack"} example_handler["live"] = False # example_handler.remove() example_handler.insert(allow_duplicates=True) records1 = example_handler.find() records2 = example_handler.find() records3 = example_handler.find() logger.warning((records1, len(records1))) logger.success((records2, len(records2))) logger.error((records3, len(records3)))
def __init__(self): # List of datasets we intend to download from yahoo finance self.datalist = ["MSFT", "AAPL", "GOOG"] self.datasets = [] self.dataset_info = {} self.processor = Jamboree() self.pricedata_management = PriceData() self.pricedata_management.processor = self.processor self.dow_metadata = [] self.reloaded_datasets = [] self.episodes = [] self._raw = [] self.set_name = "default_test"
def main(): import pandas_datareader.data as web # data_msft = web.DataReader('MSFT','yahoo',start='2019/9/1',end='2020/1/30').round(2) # data_apple = web.DataReader('AAPL','yahoo',start='2019/9/1',end='2020/1/30').round(2) episode_id = uuid.uuid4().hex jambo = Jamboree() jam_processor = Jamboree() data_hander = PriceData() data_hander.processor = jam_processor trx_tron = data_hander.build("Tron", "TRX", country="Japan", sector="oil", market="commodities", exchange="binance") # The episode and live parameters are probably not good for the scenario. Will probably need to switch to something else to identify data trx_tron.episode = episode_id trx_tron.live = False trx_tron.reset() res = trx_tron.multi_search(country="jap") pprint.pprint(res)
def main(): import pandas_datareader.data as web # data_msft = web.DataReader('MSFT','yahoo',start='2019/9/1',end='2020/1/30').round(2) # data_apple = web.DataReader('AAPL','yahoo',start='2019/9/1',end='2020/1/30').round(2) episode_id = uuid.uuid4().hex jambo = Jamboree() jam_processor = Jamboree() data_hander = OrderbookData() data_hander.processor = jam_processor data_hander.event = jambo # The episode and live parameters are probably not good for the scenario. Will probably need to switch to something else to identify data data_hander.episode = episode_id data_hander.live = False data_hander['subcategories'] = { "market": "stock", "country": "Mexico", "sector": "tech", "exchange": "binance", } data_hander['name'] = "ETH Ethereum" data_hander.reset() # data_hander.store_time_df(data_msft, is_bar=True) data_hander['name'] = "BTC Bitcoin" # data_hander.reset() # data_hander.store_time_df(data_apple, is_bar=True) start = maya.now()._epoch # res1 = data_hander.by_name("Bitcoin") # logger.debug(res1) end = maya.now()._epoch logger.info(end - start) res = data_hander.multi_part_search(market="stock", exchange="binance", country="Mexico") logger.warning(res)
def main(): jambo = Jamboree() sample_env_handler = SampleEnvHandler() sample_env_handler.limit = 250 sample_env_handler.processor = jambo # with timecontext(): current_time = maya.now()._epoch mult = 60 # Create a new set of records and swap to another location to be acted on. sample_env_handler['episode'] = uuid.uuid1().hex with timecontext(): super_index = 0 for _ in range(100): v1 = random.uniform(0, 12) sample_env_handler.save({ "value": v1, "time": (current_time + (mult * super_index)) }) super_index += 1 many_list = [] catch_index_1 = random.randint(super_index - 10, super_index + 3) catch_index_2 = random.randint(super_index - 10, super_index + 3) last_by_time = (current_time + (mult * catch_index_1)) last_by_time_2 = (current_time + (mult * catch_index_2)) for _ in range(10): item = { "valuesssssss": random.uniform(0, 12), "time": (current_time + (mult * super_index)) } many_list.append(item) super_index += 1 sample_env_handler.save_many(many_list) latest = sample_env_handler.last() last_by = sample_env_handler.last_by(last_by_time, ar="relative") last_by_2 = sample_env_handler.last_by(last_by_time_2, ar="relative") t1 = last_by.get('time', time.time()) t2 = last_by_2.get('time', time.time()) logger.info(latest) logger.success(t1) logger.error(t2)
"is_filter": True, "values": { "is_exact": True, "term": submetatype } } self._search['name'] = self.name self._search['category'] = self.category self._search['subcategories'] = self.subcategories self._search['abbreviation'] = self.abbreviation self._search.processor = self.processor return self._search def reset(self): self.check() qo = self.setup_query() qo.pop("mtype", None) if self.description is not None: qo['description'] = self.description return self.search.Create(allow_duplicates=False, no_overwrite_must_have=True, **qo) if __name__ == "__main__": jambo = Jamboree() metahandler = MetaHandler() metahandler.event = jambo metahandler.reset()
_multi["submetatype"] = item["submetatype"] _multi["category"] = item["category"] _multi["metatype"] = item["metatype"] _multi["subcategories"] = (item["subcategories"]).to_dict() _multi.reset() return _multi if __name__ == "__main__": with example_space("Multi-Data-Management") as example: # set_name = uuid.uuid4().hex with logger.catch(): set_name = "ac688d95336e41bdbe61c5c804d07f1a" episode = uuid.uuid4().hex # jam = Jamboree() jam_proc = Jamboree() multi_data = MultiDataManagement() multi_data.processor = jam_proc # The episode and live parameters are probably not good for the scenario. # Will probably need to switch to something else to identify data. multi_data["name"] = set_name multi_data["category"] = "markets" multi_data["subcategories"] = { "market": "stock", "country": "US", "sector": "techologyyyyyyyy", } multi_data["submetatype"] = "DINGO" multi_data["abbreviation"] = "MSFT" multi_data.episode = episode multi_data.live = False