Exemplo n.º 1
0
 def run_episode(self):
     examples = []
     board = get_random_board()
     initial_node = MCTSNode(is_initial=True)
     player_blue = NNPlayer(Color.BLUE,
                            n_simulations=self.n_simulations,
                            current_node=initial_node,
                            janggi_net=self.predictor,
                            temperature_start=1,
                            temperature_threshold=30,
                            temperature_end=0.01)
     player_red = NNPlayer(Color.RED,
                           n_simulations=self.n_simulations,
                           current_node=initial_node,
                           janggi_net=self.predictor,
                           temperature_start=1,
                           temperature_threshold=30,
                           temperature_end=0.01)
     game = Game(player_blue, player_red, board)
     while not game.is_finished(self.iter_max):
         new_action = game.get_next_action()
         game.actions.append(new_action)
         if game.current_player == Color.BLUE:
             examples.append([
                 board.get_features(game.current_player, game.round),
                 player_blue.current_node.get_policy(game.current_player),
                 Color.BLUE
             ])
             examples.append([
                 board.get_features(game.current_player,
                                    game.round,
                                    data_augmentation=True),
                 player_blue.current_node.get_policy(
                     game.current_player, data_augmentation=True),
                 Color.BLUE
             ])
         else:
             examples.append([
                 board.get_features(game.current_player,
                                    game.round,
                                    data_augmentation=True),
                 player_red.current_node.get_policy(game.current_player,
                                                    data_augmentation=True),
                 Color.RED
             ])
             examples.append([
                 board.get_features(game.current_player, game.round),
                 player_red.current_node.get_policy(game.current_player),
                 Color.RED
             ])
         game.board.apply_action(new_action)
         game.switch_player()
         game.board.invalidate_action_cache(
             new_action)  # Try to reduce memory usage
         game.round += 1
     winner = game.get_winner()
     set_winner(examples, winner)
     return examples
Exemplo n.º 2
0
 def test_stockfish(self):
     board = get_random_board()
     process = get_process_stockfish(board, "level 40 5 0")
     player_blue = StockfishPlayer(Color.BLUE, process, think_time=-1)
     player_red = StockfishPlayer(Color.RED, process, think_time=-1)
     game = Game(player_blue, player_red, board)
     winner = game.run_game(200)
     print(winner)
     print(repr(game.board))
def fight(player_blue, player_red, iter_max, print_board=False):
    board = get_random_board()
    game = Game(player_blue, player_red, board)
    winner = game.run_game(iter_max, print_board=print_board)
    print("Winner:", winner)
    print("Score BLUE:", board.get_score(Color.BLUE))
    print("Score RED:", board.get_score(Color.RED))
    print(repr(board))
    print(board)
    print(game.to_uci_usi())
    return winner
Exemplo n.º 4
0
def run_episode_stockfish(args):
    print("Starting episode", current_process().name)
    begin_time = time.time()
    iter_max = args
    board = get_random_board()
    process = get_process_stockfish(board)
    player_blue = StockfishPlayer(Color.BLUE, process, think_time=2)
    player_red = StockfishPlayer(Color.RED, process, think_time=2)
    game = run_game(board, player_blue, player_red, iter_max)
    print("Time Episode: ", time.time() - begin_time)
    return game.dumps()
Exemplo n.º 5
0
 def test_single_action_random(self):
     n_simulations = 800
     node = MCTSNode()
     player_blue = RandomMCTSPlayer(Color.BLUE,
                                    n_simulations=n_simulations,
                                    current_node=node)
     player_red = RandomMCTSPlayer(Color.RED,
                                   n_simulations=n_simulations,
                                   current_node=node)
     board = get_random_board()
     game = Game(player_blue, player_red, board)
     game.get_next_action()
Exemplo n.º 6
0
 def test_random_vs_random(self):
     n_simulations = 400
     node = MCTSNode()
     player_blue = RandomMCTSPlayer(Color.BLUE,
                                    n_simulations=n_simulations,
                                    current_node=node)
     player_red = RandomMCTSPlayer(Color.RED,
                                   n_simulations=n_simulations,
                                   current_node=node)
     # winner = fight(player_blue, player_red, 200)
     board = get_random_board()
     game = Game(player_blue, player_red, board)
     winner = game.run_game(200)
     self.assertIn(winner, [Color.BLUE, Color.RED])
     print(game.to_json(node))
Exemplo n.º 7
0
 def test_single_action_nn(self):
     n_simulations = 800
     player_blue = NNPlayer(Color.BLUE,
                            n_simulations=n_simulations,
                            janggi_net=JanggiNetwork(),
                            temperature_start=0.01,
                            temperature_threshold=30,
                            temperature_end=0.01)
     player_red = NNPlayer(Color.RED,
                           n_simulations=n_simulations,
                           janggi_net=JanggiNetwork(),
                           temperature_start=0.01,
                           temperature_threshold=30,
                           temperature_end=0.01)
     board = get_random_board()
     game = Game(player_blue, player_red, board)
     game.get_next_action()
Exemplo n.º 8
0
def run_episode_raw_not_nn(args):
    print("Starting episode", current_process().name)
    begin_time = time.time()
    n_simulations, iter_max = args
    board = get_random_board()
    initial_node = MCTSNode(is_initial=True)
    player_blue = RandomMCTSPlayer(Color.BLUE,
                                   n_simulations=n_simulations,
                                   current_node=initial_node,
                                   temperature_start=1,
                                   temperature_threshold=30,
                                   temperature_end=0.01)
    player_red = RandomMCTSPlayer(Color.RED,
                                  n_simulations=n_simulations,
                                  current_node=initial_node,
                                  temperature_start=1,
                                  temperature_threshold=30,
                                  temperature_end=0.01)
    game = run_game(board, player_blue, player_red, iter_max)
    print("Time Episode: ", time.time() - begin_time)
    return game.to_json(initial_node)