Exemplo n.º 1
0
def analyze_signal(dv, signal_name, output_format='pdf'):
    # Step.2 calculate mask (to mask those ill data points)
    mask_sus = dv.get_ts('suspended')
    mask_index_member = dv.get_ts('not_index_member')
    mask_limit_reached = dv.get_ts('limit_reached')
    mask_all = np.logical_or(
        mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    signal = dv.get_ts(signal_name)  # avoid look-ahead bias
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    my_period = 5
    obj = SignalDigger(output_folder='../../output/test_signal',
                       output_format=output_format)
    obj.process_signal_before_analysis(
        signal,
        price=price,
        mask=mask_all,
        n_quantiles=5,
        period=my_period,
        benchmark_price=price_bench,
    )
    res = obj.create_full_report()
Exemplo n.º 2
0
def analyze_event():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)
    
    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    target_symbol = '600519.SH'
    price = dv.get_ts('close_adj', symbol=target_symbol)
    dv.add_formula('in_', 'open_adj / Delay(close_adj, 1)', is_quarterly=False)
    signal = dv.get_ts('in_', symbol=target_symbol).shift(1, axis=0)  # avoid look-ahead bias
    
    # Step.4 analyze!
    obj = SignalDigger(output_folder='../../output', output_format='pdf')

    obj.create_single_signal_report(signal, price, [1, 5, 9, 21], 6, mask=None,
                                    buy_condition={'cond1': {'column': 'quantile',
                                                             'filter': lambda x: x > 3,
                                                             'hold': 5},
                                                   'cond2': {'column': 'quantile',
                                                             'filter': lambda x: x > 5,
                                                             'hold': 5},
                                                   'cond3': {'column': 'quantile',
                                                             'filter': lambda x: x > 5,
                                                             'hold': 9},
                                                   })
Exemplo n.º 3
0
def analyze_event():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    # --------------------------------------------------------------------------------
    # Step.2 calculate mask (to mask those ill data points)
    mask_limit_reached = dv.get_ts('mask_limit_reached')
    mask_index_member = dv.get_ts('mask_index_member')
    mask_sus = dv.get_ts('mask_sus')

    mask_all = np.logical_or(
        mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    dv.add_formula('in_',
                   '(Delay(index_weight, 1) == 0) && (index_weight > 0)',
                   is_quarterly=False)

    signal = dv.get_ts('in_').shift(1, axis=0)  # avoid look-ahead bias
    # Step.4 analyze!
    obj = SignalDigger(output_folder='../../output', output_format='pdf')

    obj.create_binary_event_report(signal,
                                   price,
                                   mask_all,
                                   price_bench,
                                   periods=[20, 60, 121, 242],
                                   group_by=None)
Exemplo n.º 4
0
def analyze_event():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    # --------------------------------------------------------------------------------
    # Step.2 calculate mask (to mask those ill data points)
    mask_limit_reached = dv.get_ts('mask_limit_reached')
    mask_index_member = dv.get_ts('mask_index_member')
    mask_sus = dv.get_ts('mask_sus')
    
    mask_all = np.logical_or(mask_sus, np.logical_or(mask_index_member, mask_limit_reached))
    
    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    dv.add_formula('in_', '(Delay(index_weight, 1) == 0) && (index_weight > 0)', is_quarterly=False)
    
    signal = dv.get_ts('in_').shift(1, axis=0)  # avoid look-ahead bias
    # Step.4 analyze!
    obj = SignalDigger(output_folder='../../output', output_format='pdf')

    obj.create_binary_event_report(signal, price, mask_all, price_bench, periods=[20, 60, 121, 242], group_by=None)
Exemplo n.º 5
0
def analyze_signal():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    # --------------------------------------------------------------------------------
    # Step.2 calculate mask (to mask those ill data points)
    trade_status = dv.get_ts('trade_status')
    mask_sus = trade_status == u'停牌'.encode('utf-8')

    df_index_member = dv.get_ts('index_member')
    mask_index_member = ~(df_index_member > 0)

    dv.add_formula('limit_reached',
                   'Abs((open - Delay(close, 1)) / Delay(close, 1)) > 0.095',
                   is_quarterly=False)
    df_limit_reached = dv.get_ts('limit_reached')
    mask_limit_reached = df_limit_reached > 0

    mask_all = np.logical_or(
        mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    # dv.add_formula('illi_daily', '(high - low) * 1000000000 / turnover', is_quarterly=False)
    # dv.add_formula('illi', 'Ewma(illi_daily, 11)', is_quarterly=False)

    # dv.add_formula('size', 'Log(float_mv)', is_quarterly=False)
    # dv.add_formula('value', '-1.0/pb', is_quarterly=False)
    # dv.add_formula('liquidity', 'Ts_Mean(volume, 22) / float_mv', is_quarterly=False)
    dv.add_formula('divert',
                   '- Correlation(vwap_adj, volume, 10)',
                   is_quarterly=False)

    signal = dv.get_ts('divert').shift(1, axis=0)  # avoid look-ahead bias
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    my_period = 5
    obj = SignalDigger(output_folder='../../output/test_signal',
                       output_format='pdf')
    obj.process_signal_before_analysis(
        signal,
        price=price,
        mask=mask_all,
        n_quantiles=5,
        period=my_period,
        benchmark_price=price_bench,
    )
    res = obj.create_full_report()
Exemplo n.º 6
0
def analyze_event():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    # --------------------------------------------------------------------------------
    # Step.2 calculate mask (to mask those ill data points)
    trade_status = dv.get_ts('trade_status')
    mask_sus = trade_status == u'停牌'.encode('utf-8')

    df_index_member = dv.get_ts('index_member')
    mask_index_member = ~(df_index_member > 0)

    dv.add_formula('limit_reached',
                   'Abs((open - Delay(close, 1)) / Delay(close, 1)) > 0.095',
                   is_quarterly=False)
    df_limit_reached = dv.get_ts('limit_reached')
    mask_limit_reached = df_limit_reached > 0

    mask_all = np.logical_or(
        mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    dv.add_formula('new_high',
                   'close_adj >= Ts_Max(close_adj, 300)',
                   is_quarterly=False)
    dv.add_formula('new_high_delay',
                   'Delay(Ts_Max(new_high, 300), 1)',
                   is_quarterly=False)
    dv.add_formula('sig', 'new_high && (! new_high_delay)', is_quarterly=False)

    signal = dv.get_ts('sig').shift(0, axis=0)  # avoid look-ahead bias
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    obj = SignalDigger(output_folder=jutil.join_relative_path('../output'),
                       output_format='pdf')

    obj.create_binary_event_report(signal,
                                   price,
                                   mask_all,
                                   5,
                                   price_bench,
                                   periods=[5, 20, 40])
Exemplo n.º 7
0
def test_analyze_signal():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    mask = mask_index_member(dv)
    can_enter, can_exit = limit_up_down(dv)

    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    dv.add_formula('divert',
                   '- Correlation(vwap_adj, volume, 10)',
                   is_quarterly=False,
                   add_data=True)

    signal = dv.get_ts('divert')
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    my_period = 5
    obj = SignalDigger(output_folder='../output/test_signal',
                       output_format='pdf')
    obj.process_signal_before_analysis(
        signal=signal,
        price=price,
        high=dv.get_ts("high_adj"),  # 可为空
        low=dv.get_ts("low_adj"),  # 可为空
        group=dv.get_ts("sw1"),
        n_quantiles=5,  # quantile分类数
        mask=mask,  # 过滤条件
        can_enter=can_enter,  # 是否能进场
        can_exit=can_exit,  # 是否能出场
        period=my_period,  # 持有期
        benchmark_price=price_bench,  # 基准价格 可不传入,持有期收益(return)计算为绝对收益
        commission=0.0008,
    )
    signal_data = obj.signal_data
    result = analysis(signal_data, is_event=False, period=my_period)
    ic = pfm.calc_signal_ic(signal_data, by_group=True)
    mean_ic_by_group = pfm.mean_information_coefficient(ic, by_group=True)
    plotting.plot_ic_by_group(mean_ic_by_group)
    res = obj.create_full_report()
Exemplo n.º 8
0
def analyze_signal(dv, signal_name, output_format='pdf'):
    # Step.2 calculate mask (to mask those ill data points)
    mask_sus = dv.get_ts('suspended')
    mask_index_member = dv.get_ts('not_index_member')
    mask_limit_reached = dv.get_ts('limit_reached')
    mask_all = np.logical_or(mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    signal = dv.get_ts(signal_name).shift(1, axis=0)  # avoid look-ahead bias
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    my_period = 5
    obj = SignalDigger(output_folder='../../output/test_signal',
                       output_format=output_format)
    obj.process_signal_before_analysis(signal, price=price,
                                       mask=mask_all,
                                       n_quantiles=5, period=my_period,
                                       benchmark_price=price_bench,
                                       )
    res = obj.create_full_report()
Exemplo n.º 9
0
def test_analyze_signal():
    # --------------------------------------------------------------------------------
    # Step.1 load dataview
    dv = DataView()
    dv.load_dataview(dataview_folder)

    # --------------------------------------------------------------------------------
    # Step.2 calculate mask (to mask those ill data points)
    trade_status = dv.get_ts('trade_status')
    mask_sus = trade_status == u'停牌'

    df_index_member = dv.get_ts('index_member')
    mask_index_member = ~(df_index_member > 0)

    dv.add_formula('limit_reached', 'Abs((open - Delay(close, 1)) / Delay(close, 1)) > 0.095', is_quarterly=False)
    df_limit_reached = dv.get_ts('limit_reached')
    mask_limit_reached = df_limit_reached > 0

    mask_all = np.logical_or(mask_sus, np.logical_or(mask_index_member, mask_limit_reached))

    # --------------------------------------------------------------------------------
    # Step.3 get signal, benchmark and price data
    dv.add_formula('divert', '- Correlation(vwap_adj, volume, 10)', is_quarterly=False)
    
    signal = dv.get_ts('divert').shift(1, axis=0)  # avoid look-ahead bias
    price = dv.get_ts('close_adj')
    price_bench = dv.data_benchmark

    # Step.4 analyze!
    my_period = 5
    obj = SignalDigger(output_folder='../output/test_signal', output_format='pdf')
    obj.process_signal_before_analysis(signal, price=price,
                                       mask=mask_all,
                                       n_quantiles=5, period=my_period,
                                       benchmark_price=price_bench,
                                       )
    res = obj.create_full_report()
Exemplo n.º 10
0
    def _generate_data(self,
                       signal,
                       period,
                       mask=None,
                       can_enter=None,
                       can_exit=None,
                       benchmark=None,
                       commission=0.0008):
        '''
        :param signal:
        :param period:
        :param mask:
        :param can_enter:
        :param can_exit:
        :param benchmark:
        :param commission:
        :return:
        '''

        obj = SignalDigger()
        # 处理因子 计算目标股票池每只股票的持有期收益,和对应因子值的quantile分类
        obj.process_signal_before_analysis(
            signal=signal,
            price=self.dv.get_ts("close_adj").reindex_like(signal),
            high=self.dv.get_ts("high_adj").reindex_like(signal),
            low=self.dv.get_ts("low_adj").reindex_like(signal),
            n_quantiles=5,
            mask=mask.reindex_like(signal) if mask is not None else None,
            can_enter=can_enter.reindex_like(signal)
            if can_enter is not None else None,  # 是否能进场
            can_exit=can_exit.reindex_like(signal)
            if can_exit is not None else None,  # 是否能出场
            period=period,  # 持有期
            benchmark_price=benchmark,  # 基准价格 可不传入,持有期收益(return)计算为绝对收益
            commission=commission,
        )
        return obj.signal_data
Exemplo n.º 11
0
def cal_obj(signal, name, period, quantile):
    obj = SignalDigger(
    )  #SignalDigger实体化,下面调用它的方法process_signal_before_analysis
    obj.process_signal_before_analysis(
        signal,  #因子数据
        price=price,  #价格数据
        n_quantiles=quantile,  #百分位
        period=period,  #持有周期
        can_enter=can_enter,  #能买入
        can_exit=can_exit,  #能卖出
        group=group,  #行业分类表格
        mask=mask  #指数成分的过滤
    )
    obj.create_full_report()  #创建一个完整的report
    return obj